
1

Deadlock Solutions

CS 241

March 28, 2012

University of Illinois

2

Announcements

Office hours today: 3-4 and 5-6

In between: Talk by Tom Wenisch
•  Energy efficiency in warehouse-scale computers
•  4pm, in 3405 SC

Midterm exams: you may look at them through the end of this
week

•  An extension of our one-week policy
•  Drop by office hours today (3-4 and 5-6) or schedule appointment

3

Deadlock: definition

There exists a cycle of processes such that each process
cannot proceed until the next process takes some specific
action.

Result: all processes in the cycle are stuck!

4

Deadlock in the real world

Which way
should I go?

5

Deadlock in the real world

I can almost
get across Drat!

GRIDLOCK!

6

Deadlock: One-lane Bridge

Traffic only in one direction

Each section of a bridge can be viewed as a resource

What can happen?

7

Deadlock: One-lane Bridge

 Traffic only in one direction

 Each section of a bridge can be viewed as a resource

 Deadlock
 Resolved if cars back up (preempt resources and rollback)
 Several cars may have to be backed up

8

Deadlock: One-lane Bridge

 Traffic only in one direction

 Each section of a bridge can be viewed as a resource

 Deadlock
 Resolved if cars back up (preempt resources and rollback)
 Several cars may have to be backed up

 But, starvation is possible
  e.g., if the rule is that Westbound cars always go first when present

9

Deadlock: One-lane Bridge

Deadlock vs. Starvation
•  Starvation = Indefinitely postponed

  Delayed repeatedly over a long period of time while the
attention of the system is given to other processes

  Logically, the process may proceed but the system never
gives it the CPU (unfortunate scheduling)

•  Deadlock = no hope
  All processes blocked; scheduling change won’t help

I always have to
back up!

10

Deadlock solutions

Prevention
•  Design system so that deadlock is impossible

Avoidance
•  Steer around deadlock with smart scheduling

Detection & recovery
•  Check for deadlock periodically
•  Recover by killing a deadlocked processes and releasing its resources

Do nothing
•  Prevention, avoidance and detection/recovery are expensive
•  If deadlock is rare, is it worth the overhead?
•  Manual intervention (kill processes, reboot) if needed

11

Deadlock Prevention

12

Aside: Necessary Conditions for
Deadlock

 Mutual exclusion
 Processes claim exclusive control of the resources they require

 Hold-and-wait (a.k.a. wait-for) condition
 Processes hold resources already allocated to them while waiting for

additional resources

 No preemption condition
 Resources cannot be removed from the processes holding them

until used to completion

 Circular wait condition
 A circular chain of processes exists in which each process holds one

or more resources that are requested by the next process in the
chain

13

Deadlock prevention

Goal 1: devise resource allocation rules which make circular
wait impossible

•  Resources include mutex locks, semaphores, pages of memory, ...
•  ...but you can think about just mutex locks for now

Goal 2: make sure useful behavior is still possible!
•  The rules will necessarily be conservative

  Rule out some behavior that would not cause deadlock
•  But they shouldn’t be to be too conservative

  We still need to get useful work done

14

Rule #1: No Mutual Exclusion

For deadlock to happen: processes must claim exclusive
control of the resources they require

How to break it?

15

Rule #1: No Mutual Exclusion

For deadlock to happen: processes must claim exclusive
control of the resources they require

How to break it?
•  Non-exclusive access only

  Read-only access
•  Battle won!

  War lost
  Very bad at Goal #2

16

Rule #2: Allow preemption

A lock can be taken away from current owner
•  Let it go: If a process holding some resources is denied a further request,

that process must release its original resources
•  Or take it all away: OS preempts current resource owner, gives resource to

new process/thread requesting it

Breaks circular wait
•  ...because we don’t have to wait

Reasonable strategy sometimes
•  e.g. if resource is memory: “preempt” = page to disk

Not so convenient for synchronization resources
•  e.g., locks in multithreaded application
•  What if current owner is in the middle of a critical section updating

pointers? Data structures might be left in inconsistent state!

17

Rule #3: No hold and wait

When waiting for a resource, must not hold others
•  So, process can only have one resource locked
•  Or, it must request all resources at the beginning
•  Or, before asking for more: give up everything you have and request it

all at one time

Breaks circular wait
•  In resource allocation diagram: process with an outgoing link must have

no incoming links
•  Therefore, cannot have a loop!

18

Rule #3: No hold and wait

Breaks circular wait
•  In resource allocation diagram: process with an outgoing link must have

no incoming links
•  Therefore, cannot have a loop!

Q: Which of these request links would be disallowed?

Process

Resource

request

ownership

19

Rule #3: No hold and wait

Breaks circular wait
•  In resource allocation diagram: process with an outgoing link must have

no incoming links
•  Therefore, cannot have a loop!

A: Legal links are...

Process

Resource

request

ownership

20

Rule #3: No hold and wait

Very constraining (bad job on Goal #2)
•  Better than Rules #1 and #2, but...
•  Often need more than one resource
•  Hard to predict at the begining what resources you’ll need
•  Releasing and re-requesting is inefficient, complicates programming,

might lead to starvation

21

Rule #4: request resources in order

Must request resources in increasing order
•  Impose ordering on resources (any ordering will do)
•  If holding resource i, can only request resources > i

Much less constraining (decent job on Goal #2)
•  Strictly easier to satisfy than “No hold and wait”: If we can request all

resources at once, then we can request them in increasing order
•  But now, we don’t need to request them all at once
•  Can pick the arbitrary ordering for convenience to the application
•  Still might be inconvenient at times

But why is it guaranteed to preclude circular wait?

22

Back to the trivial broken
“solution”...

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 take_fork(i);
 take_fork((i+1)%N);
 eat(); /* yummy */
 put_fork(i);
 put_fork((i+1)%N);
 }
}

Dining Philosophers solution with
unnumbered resources

23

Back to the trivial broken
“solution”...

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 take_fork(i);
 take_fork((i+1)%N);
 eat(); /* yummy */
 put_fork(i);
 put_fork((i+1)%N);
 }
}

Dining Philosophers solution with
unnumbered resources

24

Dining Philosophers solution with
unnumbered resources

Back to the trivial broken
“solution”...

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 take_fork(i);
 take_fork((i+1)%N);
 eat(); /* yummy */
 put_fork(i);
 put_fork((i+1)%N);
 }
}

25

Dining Philosophers solution with
numbered resources

Instead, number resources

First request lower numbered fork

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 take_fork(LOWER(i));
 take_fork(HIGHER(i));
 eat(); /* yummy */
 put_fork(LOWER(i));
 put_fork(HIGHER(i));
 }
}

1

2
3

4

5

26

Dining Philosophers solution with
numbered resources

Instead, number resources...

Then request higher numbered fork

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 take_fork(LOWER(i));
 take_fork(HIGHER(i));
 eat(); /* yummy */
 put_fork(LOWER(i));
 put_fork(HIGHER(i));
 }
}

1

2
3

4

5

27

Dining Philosophers solution with
numbered resources

Instead, number resources...

Then request higher numbered fork

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 take_fork(LOWER(i));
 take_fork(HIGHER(i));
 eat(); /* yummy */
 put_fork(LOWER(i));
 put_fork(HIGHER(i));
 }
}

1

2
3

4

5

28

Dining Philosophers solution with
numbered resources

Instead, number resources...

One philosopher can eat!

define N 5

void philosopher (int i) {
 while (TRUE) {
 think();
 take_fork(LOWER(i));
 take_fork(HIGHER(i));
 eat(); /* yummy */
 put_fork(LOWER(i));
 put_fork(HIGHER(i));
 }
}

1

2
3

4

5

29

Without numbering

Ordered resource requests prevent
deadlock

Cycle!

30

With numbering

Ordered resource requests prevent
deadlock

3
4

7
8

Contradiction:
Must have requested 3

first!

31

Proof by M.C. Escher

32

33

Are we always in trouble without
ordering resources?

 No, not always:

Ordered resource requests are sufficient to avoid
deadlock, but not necessary

Convenient, but may be conservative

3
4

7
8

34

Q: What’s the rule of the road?

What’s the law? Does it resemble one of the rules we saw?

I can almost
get across Drat!

35

Summary

Deadlock prevention
•  Imposes rules on what system can do
•  These rules are conservative
•  Most useful technique: ordered resources
•  Application can do it; no special OS support

Next: dealing with deadlocks other ways
•  Avoidance
•  Detection & recovery

