Deadlock Solutions

CS 24|

March 28, 2012

Announcements

Office hours today: 3-4 and 5-6

In between: Talk by Tom Wenisch

* Energy efficiency in warehouse-scale computers

* 4pm, in 3405 SC

Midterm exams: you may look at them through the end of this
week
* An extension of our one-week policy

* Drop by office hours today (3-4 and 5-6) or schedule appointment

Deadlock: definition

There exists a cycle of processes such that each process
cannot proceed until the next process takes some specific
action.

Result: all processes in the cycle are stuck!

Deadlock in the real world

[Which way
should | go!?

Deadlock in the real world

GRIDLOCK!

Deadlock: One-lane Bridge

Traffic only in one direction

Each section of a bridge can be viewed as a resource

What can happen!

Deadlock: One-lane Bridge

Traffic only in one direction

Each section of a bridge can be viewed as a resource

Deadlock
O Resolved if cars back up (preempt resources and rollback)
O Several cars may have to be backed up

Deadlock: One-lane Bridge

Traffic only in one direction

Each section of a bridge can be viewed as a resource

Deadlock

O Resolved if cars back up (preempt resources and rollback)
O Several cars may have to be backed up

But, starvation is possible
M eg, if the rule is that Westbound cars always go first when present

Deadlock: One-lane Bridge

(M \WNoe” o

Deadlock vs. Starvation

* Starvation = Indefinitely postponed

= Delayed repeatedly over a long period of time while the
attention of the system is given to other processes

= Logically, the process may proceed but the system never
gives it the CPU (unfortunate scheduling)

* Deadlock = no hope

= All processes blocked; scheduling change won'’t help

Prevention

* Design system so that deadlock is impossible

Avoidance

* Steer around deadlock with smart scheduling

Detection & recovery
* Check for deadlock periodically

* Recover by killing a deadlocked processes and releasing its resources

Do nothing
* Prevention, avoidance and detection/recovery are expensive
* If deadlock is rare, is it worth the overhead!?
* Manual intervention (kill processes, reboot) if needed

Deadlock Prevention

Aside: Necessary Conditions for
Deadlock

Mutual exclusion
O Processes claim exclusive control of the resources they require

Hold-and-wait (a.k.a. wait-for) condition

O Processes hold resources already allocated to them while waiting for
additional resources

No preemption condition

O Resources cannot be removed from the processes holding them
until used to completion

Circular wait condition

O A circular chain of processes exists in which each process holds one
or more resources that are requested by the next process in the
chain

Deadlock prevention

Goal |: devise resource allocation rules which make circular
wait impossible
* Resources include mutex locks, semaphores, pages of memory, ...

* ..but you can think about just mutex locks for now

Goal 2: make sure useful behavior is still possible!
* The rules will necessarily be conservative
= Rule out some behavior that would not cause deadlock
* But they shouldn’t be to be too conservative

= We still need to get useful work done

Rule #1: No Mutual Exclusion

For deadlock to happen: processes must claim exclusive
control of the resources they require

How to break it?

Rule #1: No Mutual Exclusion

For deadlock to happen: processes must claim exclusive
control of the resources they require

How to break it?
* Non-exclusive access only
= Read-only access
* Battle won!
= War lost
= Very bad at Goal #2

Rule #2: Allow preemption

A lock can be taken away from current owner

* Letit go: If a process holding some resources is denied a further request,
that process must release its original resources

* Or take it all away: OS preempts current resource owner, gives resource to
new process/thread requesting it

Breaks circular wait
e ..because we don’t have to wait

Reasonable strategy sometimes
* e.g. if resource is memory: “preempt”’ = page to disk

Not so convenient for synchronization resources
* e.g, locks in multithreaded application

* What if current owner is in the middle of a critical section updating
pointers! Data structures might be left in inconsistent state!

Rule #3: No hold and wait

When waiting for a resource, must not hold others
* So, process can only have one resource locked
* Or, it must request all resources at the beginning

* Or, before asking for more: give up everything you have and request it
all at one time

Breaks circular wait

* In resource allocation diagram: process with an outgoing link must have
no incoming links

* Therefore, cannot have a loop!

Rule #3: No hold and wait

Breaks circular wait

* In resource allocation diagram: process with an outgoing link must have
no incoming links

* Therefore, cannot have a loop!

Q: Which of these request links would be disallowed?

o—B
\._./

@ Process =3 request

. Resource ===sp Ownership

Rule #3: No hold and wait

Breaks circular wait

* In resource allocation diagram: process with an outgoing link must have
no incoming links

* Therefore, cannot have a loop!

A: Legal links are...

@ Process = request
. Resource ===sp Ownership

Rule #3: No hold and wait

Very constraining (bad job on Goal #2)
Better than Rules #| and #2, but...
* Often need more than one resource
* Hard to predict at the begining what resources you’ll need

* Releasing and re-requesting is inefficient, complicates programming,
might lead to starvation

20

Rule #4: request resources in order

Must request resources in increasing order

* Impose ordering on resources (any ordering will do)

* If holding resource i, can only request resources > i

Much less constraining (decent job on Goal #2)

* Strictly easier to satisfy than “No hold and wait”: If we can request all
resources at once, then we can request them in increasing order

* But now, we don’t need to request them all at once
* Can pick the arbitrary ordering for convenience to the application

* Still might be inconvenient at times

But why is it guaranteed to preclude circular wait?

21

Dining Philosophers solution with
unnumbered resources

Back to the trivial broken

11 . 144
solution ... Lhevean

define N 5 @%
void philosopher (int i) { % (ﬁ

Whl l e (TRUE) { Descaxres

think () ;

take fork(i);

take fork ((i+1)3%N); &
eat(); /* yummy */
put fork (i) ;

put fork ((i+1) 3N);

} A\" ‘stelle

22

Dining Philosophers solution with
unnumbered resources

Back to the trivial broken ,
“solution” ... rmm

define N 5 %@

void philosopher (int 1) {
while (TRUE) { D=7

think () ;
take fork(i);

take fork((i+1) 3N);
eat(); /* yummy */

put fork (i) ;

put fork ((i+1) 3N);

} A\" ‘stelle

23

Dining Philosophers solution with
unnumbered resources

Back to the trivial broken
“solution”...

define N 5

void philosopher (int i) {
while (TRUE) ({

think () ;
take fork(i);
take fork((i+l)%N) ;
eat(); /* yummy */
put fork (i) ;
put fork ((i+l) 3N) ;

24

Dining Philosophers solution with
numbered resources

Instead, number resources

First request lower numbered fork

define N 5

void philosopher (int i) {

while (TRUE) { Deserres L & @}AL’%

think () ; 2 4%
take fork (LOWER (1)) 3

take fork (HIGHER(i)) ; \ ‘& %
eat(); /* yummy */ @ g}

put fork (LOWER (1)) ; TGN PR

put fork (HIGHER(i)) ;

25

Dining Philosophers solution with
numbered resources

Instead, number resources...

Then request higher numbered fork

define N 5

g

void philosopher (int i) { @323 5
(Degcavfeé

while (TRUE) ({ < ;awe
think () ; 2 4
take fork (LOWER (1)) 3
take fork (HIGHER(i)) ; x é\\M
eat(); /* yummy */ @
put fork (LOWER (1)) ; GO @\ PR

put fork (HIGHER(i)) ;

26

Dining Philosophers solution with
numbered resources

Instead, number resources...

Then request higher numbered fork

define N 5

void philosopher (int i) {

while (TRUE) { N ’
think () ; _ﬁ
take fork (LOWER(i)) ; A =
take fork (HIGHER(i)) ; x %
eat(); /* yummy */ {?

put fork (LOWER(i)) ;
put fork (HIGHER(i)) ;

27

Dining Philosophers solution with
numbered resources

Instead, number resources...

One philosopher can eat!

define N 5

void philosopher (int i) ({
while (TRUE) ({

think () ;
take fork (LOWER(i)) ;
take fork (HIGHER(i)) ;
eat(); /* yummy */
put fork (LOWER(i)) ;
put fork (HIGHER(i)) ;

28

Ordered resource requests prevent
deadlock

Without numbering

Ordered resource requests prevent
deadlock

With numbering

Contradiction:
Must have requested 3
first!

30

Proof by M.C. Escher

31

Are we always in trouble without
ordering resources?

No, not always:

o—>B\‘(_. /o—>ﬂ

/

Ordered resource requests are sufficient to avoid
deadlock, but not necessary

Convenient, but may be conservative

33

Q: What's the rule of the road?

What’s the law? Does it resemble one of the rules we saw!?

34

Deadlock prevention
* Imposes rules on what system can do
* These rules are conservative
* Most useful technique: ordered resources

* Application can do it; no special OS support

Next: dealing with deadlocks other ways

* Avoidance
* Detection & recovery

35

