Condition Variables

CS 241
Prof. Brighten Godfrey

March 16, 2012

Synchronization primitives

Mutex locks

* Used for exclusive access to a shared resource (critical section)
* Operations: Lock, unlock

Sempahores
* Generalization of mutexes: Count number of available “resources”

* Wait for an available resource (decrement), notify availability
(increment)

* Example: wait for free buffer space, signal more buffer space

Condition variables
* Represent an arbitrary event
* Operations: Wait for event, signal occurrence of event

e Tied to a mutex for mutual exclusion

Condition variables

Goal: Wait for a specific event to happen

* Event depends on state shared with multiple threads

Solution: condition variables
e “Names’”’ an event

* Internally, is a queue of threads waiting for the event

Basic operations
* Wait for event
* Signal occurrence of event to one waiting thread

* Signal occurrence of event to all waiting threads

Signaling, not mutual exclusion

* Condition variable is intimately tied to a mutex

cond_wait

Assumption
* Called with mutex locked by calling thread

Action

* Atomically releases mutex, and...

* ..blocks thread until condition is next signaled (past signal not “queued”)
or maybe only until some interruption occurs

After return

* mutex is already locked again

int pthread_cond_wait(pthread_cond_t * cond,
pthread_mutex_t * mutex);

cond_signal

Action

* Unblocks at least one blocked thread waiting on signal

Note: “Mesa semantics’ described here
e ‘“Hoare semantics”’ different

* pthreads uses Mesa

int pthread_cond_signal(pthread_cond_t * cond);

cond_broadcast

Action

* Unblocks all blocked threads waiting on signal

Note: “Mesa semantics’ described here
e ‘“Hoare semantics”’ different

* pthreads uses Mesa

int pthread_cond_broadcast(pthread_cond_t * cond);

Producer-Consumer
with Condition Variables

Producer-consumer problem

Chef (Producer) Waiter (Consumer)

b

inserts items removes items

\) Shared resource: /

bounded buffer

Efficient implementation:
circular fixed-size buffer

Designing a solution

Chef (Producer) Waiter (Consumer)

()

\
\ -
A y

Wait for empty slot Wiait for item arrival
Insert item Remove item
Signal item arrival Signal slot available

What synchronization do we need?

Designing a solution

Chef (Producer) Waiter (Consumer)

e

Wiait for item arrival
Remove item
Signal slot available

Wiait for empty slo
Insert item
Signal item arrival

Mutex
(shared buffer)

What synchronization do we need!?

Designing a solution

Chef (Producer) Waiter (Consumer)

—_—

Wait forcempty slot - Wait for item arrival
Insert item Condition Remove item

slot frees up

Signal item arrival Signatempty s@vailable

What synchronization do we need!?

Designing a solution

Chef (Producer) Waiter (Consumer)

—_—

(item arriva
Remove item
Signal empty slot available

Wait for empty slot
Insert item
Signal(item arriva

Condition
item arrives

What synchronization do we need!?

Producer-Consumer with C.V.'s

/* Global variables */

pthread_mutex_t m;

pthread_cond_t 1item_available; /* Event: new item inserted */
pthread_cond_t space_available; /* Event: item removed */

int items_in_buffer;

int max_items;

void init(void) {
mutex_init(&m, NULL);
cond_init(&item_available, NULL);
items_in_buffer = 0;
max_items = 100;

(Note:“pthread_" prefix removed from all
synchronization calls for compactness)

Producer-Consumer with C.V.'s

void consumer(void)

{
mutex_lock(&m);
while (items_in_buffer == 0)

cond_wait(&item_available, &m);

/* Consume item */
items_in_buffer--;
cond_signal(&space_available);
mutex_unlock(&m);

Producer-Consumer with C.V.'s

void consumer(void)

{
mutex_lock(&m);
while (items_in_buffer == 0)

cond_wait(&item_available, &m);

/* Consume item */
items_in_buffer--;
cond_signal(&space_available);
mutex_unlock(&m);

}

void producer(void)

{

mutex_lock(&m);

while (items_in_buffer == max_items)
cond_wait(&space_available, &m);

/* Produce item */

items_in_buffer++;

cond_signal(&item_available);

mutex_unlock(&m);

Obvious question #1

“Why does cond_wait() need to know about my mutex!?

I'll just unlock the mutex separately.”

Condition variable without mutex

void consumer(void)
{
mutex_lock(&m);
while (items_in_buffer == 0) {
mutex_unlock(&m);
cond_wait(&item_available);
mutex_lock(&m);
}
/* Consume item */
i1tems_in_buffer--;
cond_signal(&space_available);
mutex_unlock(&m);

}

void producer(void)

{
mutex_lock(&m);

{ééms_in_buffer++;
cond_signal(&item_available);
mutex_unlock(&m);

A game of catch

void consumer(void)

q{
mutex_lock(&m);

while (items_in_buffer == 0) {
mutex_unlock(&m);
cond_wait(&item_available);
mutex_lock(&m);

}

/* Consume item */

i1tems_in_buffer--;

cond_signal(&space_available);

mutex_unlock(&m);

}

void producer(void)

{
mutex_lock(&m);

{ééms_in_buffer++;
cond_signal(&item_available);
mutex_unlock(&m);

N

2

A game of catch

mutex_unlock(&m); . .
cond_wait(&item_available); Problem: Not atomic

After unlock, producer
acquires lock,

creates condition event,
sends signal all before
wait() gets called!

Signal is lost

A game of catch

cond_wait(&item_available, &m) ;]- Solution: atomic

OS guarantees that calling
thread will not miss signal

Ties together two actions:
Checking if we should wait
and VWaiting happen while
holding the mutex lock.

20

A successful game of catch

‘ void consumer(void)
{

mutex_lock(&m);
while (items_in_buffer == 0)
cond_wait(&item_available, &m);

/* Consume item */
items_in_buffer--;
cond_signal(&space_available);
mutex_unlock(&m);

3

‘ void producer(void)
{

mutex_lock(&m);

{ééms_in_buffer++;
cond_signal(&item_available); -
mutex_unlock(&m); <

21

Obvious question #2

“Why the while loop?

Wﬁile (items_in_buffer == 0) {
cond_wait(&item_available, &m);

I'll just do an if statement.”

22

No while; just an if?

void consumer(void)

{
mutex_lock(&m);
1f (items_in_buffer == 0)

cond_wait(&item_available, &m);

/* Consume item */
items_in_buffer--;
cond_signal(&space_available);
mutex_unlock(&m);

3

void producer(void)

{

mutex_lock(&m);

{ééms_in_buffer++;
cond_signal(&item_available);
mutex_unlock(&m);

23

No while; just an if?

T1
mutex_lock(&m);

if (items_in_buffer == 0)
cond_wait(&item_available, &m);

Blocked on T2 | mutex_lock(&m);
condition items_in_buffer++; /* Produce item */
cond_signal(&item_available);
vmutex_unlock(&m);
T3 mutex_lock(&m);
Blocked on if (items_in_buffer == 0)
acquiring mutex cond_wait(&item_available, &m);

/* Consume item */
items_in_buffer--;
cond_signal(&space_available);
vmutex_unlock(&m);

(inside cond_wait())

/¥ Consume item */

items_in_buffer--; 4 ERROR: Item already consumed!

cond_signal(&space_available);
vmutex_unlock(&m);

Readers-Writers
with Condition Variables

Readers-Writers Problem

Generalization of the mutual exclusion problem

Problem statement:

* Reader threads only read the object
* Writer threads modify the object

* Writers must have exclusive access to the object

* Unlimited number of readers can access the object

Thread 2
— Reader | Writer
% Reader OK No
E Writer No No

26

Recall: Semaphore solution

Shared:

int readcnt; /* Initially = @ */
sem_t mutex, w; /* Both initially = 1 */

Writers:

void writer(void)

{
while (1) {
sem_wait(&w);

/* Critical section */
/* Writing here */

sem_post(&w);

27

Recall: Semaphore solution

Readers:

{

void reader(void)

while (1) {
sem_wait(&mutex);
readcnt++;
if (readcnt == 1) /* First reader in */

sem_wait(&w); /* Lock out writers */
sem_post(&mutex);

/¥ Main critical section */
/* Reading would happen here */

sem_wait(&mnutex);

readcnt--;

if (readcnt == @) /* Last out */
sem_post(&w); /* Let in writers */

sem_post(&mnutex);

(full code
online)

28

Condition variable solution

|dea:

* If it’s safe, just go ahead and read or write
* Otherwise, wait for my “turn”

Initialization:

/* Global variables */

pthread_mutex_t m;

pthread_cond_t turn; /* Event: it's our turn */
int writing;

int reading;

void init(void) {
pthread_mutex_init(&m, NULL);
pthread_cond_init(&turn, NULL);
reading = 0;
writing = 0;

29

Condition variable solution

void reader(void) void writer(void)

{ {
mutex_lock(&m); mutex_lock(&m);
while (writing) while (reading || writing)

cond_wait(&turn, &m); cond_wait(&turn, &m);

reading++; writing++;
mutex_unlock(&m); mutex_unlock(&m);
/* Reading here */ /* Writing here */
mutex_lock(&m); mutex_lock(&m);
reading--; writing--;
cond_signal(&turn); cond_signal (&turn);
mutex_unlock(&m); mutex_unlock(&m);

} }

(Note:“pthread_" prefix removed from all
synchronization calls for compactness)

30

Familiar problem: Starvation

while (writing) while (reading || writing)
cond_wait(&turn, &m); cond_wait(&turn, &m);

(Note:“pthread_" prefix removed from all
synchronization calls for compactness)

31

Idea: take turns

If a writer is waiting, then reader should wait its turn

* Even if it’s safe to proceed (only readers are in critical section)

Requires keeping track of waiting writers

/* Global variables */

pthread_mutex_t m;

pthread_cond_t turn; /* Event: someone else's turn */
int reading;

int writing;

int writers; _

void init(void) {
pthread_mutex_init(&m, NULL);
pthread_cond_init(&turn, NULL);

reading = 0;
writing = 0;
writers = 0; <mmm

32

Taking turns

void reader(void)

{

mutex_lock(&m);

1f (writers)
cond_wait(&turn, &m);

while (writing)
cond_wait(&turn, &m);

reading++;

mutex_unlock(&m);

/* Reading here */

mutex_lock(&m);
reading--;
cond_signal(&turn);
mutex_unlock(&m);

void writer(void)

{

mutex_lock(&m);
writers++;

while (reading || writing)

cond_wait(&turn, &m);
writing++;
mutex_unlock(&m);

/* Writing here */

mutex_lock(&m);
writing--;
writers--;
cond_signal(&turn);
mutex_unlock(&m);

33

Another problem :-(

void reader(void) void writer(void)
{ {
mutex_lock(&m); mutex_lock(&m);
if (writers) writers++;
cond_wait(&turn, &m); while (reading || writing)
while (writing) cond_wait(&turn, &m);
cond_wait(&turn, &m); writing++;
reading++; mutex_unlock(&m);

mutex_unlock(&m);

/* Writing here */
/* Reading here */

mutex_lock(&m);

mutex_lock(&m); writing--;
reading--; writers--;
cond_signal(&turn); - cond_signal(&turn);
mutex_unlock(&m); mutex_unlock(&m);

} }

Only unblocks one thread at a time;
Inefficient if many readers are waiting

34

Easy solution: Wake everyone

void reader(void)

{

mutex_lock(&m);

1f (writers)
cond_wait(&turn, &m);

while (writing)
cond_wait(&turn, &m);

reading++;

mutex_unlock(&m);

/* Reading here */

mutex_lock(&m);
reading--;
cond_broadcast(&turn);
mutex_unlock(&m);

void writer(void)

{
mutex_lock(&m);
writers++;
while (reading || writing)
cond_wait(&turn, &m);
writing++;

mutex_unlock(&m);
/* Writing here */

mutex_lock(&m);
writing--;
writers--;
- cond_broadcast(&turn);
mutex_unlock(&m);
}

35

Pitfalls

signal() before wait()

* Logical error: Waiting thread will miss the signal

Fail to lock mutex before calling wait()

* Might return error, or simply not block

if (lcondition) wait(); instead of while (!condition) wait();
* condition may still be false when wait returns!

* can lead to arbitrary errors (e.g., following NULL pointer, memory
corruption, ...)

Forget to unlock mutex
* uh oh...

36

Forgetting to unlock the mutex

void reader(void)
{
mutex_lock(&m);
1f (writers)
cond_wait(&turn, &m);
while (writing)
cond_wait(&turn, &m);
reading++;
mutex_unlock(&m);

/* Reading here */

mutex_lock(&m);
reading--;
cond_broadcast(&turn);
B
}

while (1) { reader(Q) };

After running once,

next time reader calls
mutex_lock(&m):

Waiting for

reader
thread

held by

37

Forgetting to unlock the mutex

After running once,

next time reader calls
mutex_lock(&m):

Waiting for

DEADLOCK

thread waits forever m

for event that will thread
never happen \/

held by

reader

38

Semaphores vs. Condition Variables

Semaphore Condition Variable
* Integer value (2 0) * No value
* Wait doesn’t always block * Wait always blocks
* Signal either un-blocks thread * Signal either un-blocks thread
or increments counter or is lost
* If signal releases thread, both * If signal releases thread, only
may continue concurrently one continues

= Need to hold mutex lock
to proceed

= Other thread is released
from waiting on condition,
but still has to wait to
obtain the mutex again

39

Conclusion

Condition variables

* convenient way of signaling general-purpose events between threads

Common implementation: “monitors”

* An object which does the locking/unlocking for you when its methods
are called

* See synchronized keyword in Java

Beware pitfalls...

* especially deadlock: our next topic

40

