
1

Condition Variables

CS 241

Prof. Brighten Godfrey

March 16, 2012

University of Illinois

2

Synchronization primitives

Mutex locks
•  Used for exclusive access to a shared resource (critical section)
•  Operations: Lock, unlock

Sempahores
•  Generalization of mutexes: Count number of available “resources”
•  Wait for an available resource (decrement), notify availability

(increment)
•  Example: wait for free buffer space, signal more buffer space

Condition variables
•  Represent an arbitrary event
•  Operations: Wait for event, signal occurrence of event
•  Tied to a mutex for mutual exclusion

3

Condition variables

Goal: Wait for a specific event to happen
•  Event depends on state shared with multiple threads

Solution: condition variables
•  “Names” an event
•  Internally, is a queue of threads waiting for the event

Basic operations
•  Wait for event
•  Signal occurrence of event to one waiting thread
•  Signal occurrence of event to all waiting threads

Signaling, not mutual exclusion
•  Condition variable is intimately tied to a mutex

4

cond_wait

Assumption
•  Called with mutex locked by calling thread

Action
•  Atomically releases mutex, and...
•  ...blocks thread until condition is next signaled (past signal not “queued”)

or maybe only until some interruption occurs

After return
•  mutex is already locked again

int pthread_cond_wait(pthread_cond_t * cond,	
 pthread_mutex_t * mutex);

5

cond_signal

Action
•  Unblocks at least one blocked thread waiting on signal

Note: “Mesa semantics” described here
•  “Hoare semantics” different
•  pthreads uses Mesa

int pthread_cond_signal(pthread_cond_t * cond);

6

cond_broadcast

Action
•  Unblocks all blocked threads waiting on signal

Note: “Mesa semantics” described here
•  “Hoare semantics” different
•  pthreads uses Mesa

int pthread_cond_broadcast(pthread_cond_t * cond);

7

Producer-Consumer
with Condition Variables

8

Producer-consumer problem
Chef (Producer) Waiter (Consumer)

inserts items removes items

Shared resource:
bounded buffer

Efficient implementation:
circular fixed-size buffer

9

Designing a solution
Chef (Producer) Waiter (Consumer)

Wait for empty slot
Insert item
Signal item arrival

Wait for item arrival
Remove item

Signal slot available

What synchronization do we need?

10

Designing a solution
Chef (Producer) Waiter (Consumer)

Wait for empty slot
Insert item
Signal item arrival

Wait for item arrival
Remove item

Signal slot available

What synchronization do we need?

Mutex
(shared buffer)

11

Designing a solution
Chef (Producer) Waiter (Consumer)

Wait for empty slot
Insert item
Signal item arrival

Wait for item arrival
Remove item

Signal empty slot available

What synchronization do we need?

Condition
slot frees up

12

Designing a solution
Chef (Producer) Waiter (Consumer)

Wait for empty slot
Insert item
Signal item arrival

Wait for item arrival
Remove item

Signal empty slot available

What synchronization do we need?

Condition
item arrives

13

Producer-Consumer with C.V.’s

/* Global variables */  
pthread_mutex_t m;  
pthread_cond_t item_available; /* Event: new item inserted */  
pthread_cond_t space_available; /* Event: item removed */  
int items_in_buffer;  
int max_items;  
  
void init(void) {  
 mutex_init(&m, NULL);  
 cond_init(&item_available, NULL);  
 items_in_buffer = 0;  
 max_items = 100;  
}  

(Note: “pthread_” prefix removed from all
synchronization calls for compactness)

14

Producer-Consumer with C.V.’s
void consumer(void)  
{  
 mutex_lock(&m);  
 while (items_in_buffer == 0)  
 cond_wait(&item_available, &m);  
 /* Consume item */  
 items_in_buffer--;  
 cond_signal(&space_available);  
 mutex_unlock(&m);  
}

15

Producer-Consumer with C.V.’s
void consumer(void)  
{  
 mutex_lock(&m);  
 while (items_in_buffer == 0)  
 cond_wait(&item_available, &m);  
 /* Consume item */  
 items_in_buffer--;  
 cond_signal(&space_available);  
 mutex_unlock(&m);  
}	
	
void producer(void)  
{  
 mutex_lock(&m);  
 while (items_in_buffer == max_items)  
 cond_wait(&space_available, &m);  
 /* Produce item */  
 items_in_buffer++;  
 cond_signal(&item_available);  
 mutex_unlock(&m);  
}

16

Obvious question #1

“Why does cond_wait() need to know about my mutex?

I’ll just unlock the mutex separately.”

17

void consumer(void)  
{  
 mutex_lock(&m);  
 while (items_in_buffer == 0) {  
 mutex_unlock(&m);	
 cond_wait(&item_available);  
 mutex_lock(&m);	
 }	
 /* Consume item */  
 items_in_buffer--;  
 cond_signal(&space_available);  
 mutex_unlock(&m);  
}	
	
void producer(void)  
{  
 mutex_lock(&m);	
 ...  
 items_in_buffer++;  
 cond_signal(&item_available);  
 mutex_unlock(&m);  
}

Condition variable without mutex

18

void consumer(void)  
{  
 mutex_lock(&m);  
 while (items_in_buffer == 0) {  
 mutex_unlock(&m);	
 cond_wait(&item_available);  
 mutex_lock(&m);	
 }	
 /* Consume item */  
 items_in_buffer--;  
 cond_signal(&space_available);  
 mutex_unlock(&m);  
}	
	
void producer(void)  
{  
 mutex_lock(&m);	
 ...  
 items_in_buffer++;  
 cond_signal(&item_available);  
 mutex_unlock(&m);  
}

A game of catch

19

void consumer(void)  
{  
 mutex_lock(&m);  
 while (items_in_buffer == 0) {  
 mutex_unlock(&m);	
 cond_wait(&item_available);  
 mutex_lock(&m);	
 }	
 /* Consume item */  
 items_in_buffer--;  
 cond_signal(&space_available);  
 mutex_unlock(&m);  
}	
	
void producer(void)  
{  
 mutex_lock(&m);	
 ...  
 items_in_buffer++;  
 cond_signal(&item_available);  
 mutex_unlock(&m);  
}

A game of catch

Problem: Not atomic

After unlock, producer
acquires lock,
creates condition event,
sends signal all before
wait() gets called!

Signal is lost

20

void consumer(void)  
{  
 mutex_lock(&m);  
 while (items_in_buffer == 0) {  
	
 cond_wait(&item_available, &m);  
	
 }	
 /* Consume item */  
 items_in_buffer--;  
 cond_signal(&space_available);  
 mutex_unlock(&m);  
}	
	
void producer(void)  
{  
 mutex_lock(&m);	
 ...  
 items_in_buffer++;  
 cond_signal(&item_available);  
 mutex_unlock(&m);  
}

A game of catch

Solution: atomic

OS guarantees that calling
thread will not miss signal

Ties together two actions:
Checking if we should wait
and Waiting happen while
holding the mutex lock.

21

void consumer(void)  
{  
 mutex_lock(&m);  
 while (items_in_buffer == 0)  
 cond_wait(&item_available, &m);  
 /* Consume item */  
 items_in_buffer--;  
 cond_signal(&space_available);  
 mutex_unlock(&m);  
}	
	
void producer(void)  
{  
 mutex_lock(&m);	
 ...  
 items_in_buffer++;  
 cond_signal(&item_available);  
 mutex_unlock(&m);  
}

A successful game of catch

22

Obvious question #2

“Why the while loop?

I’ll just do an if statement.”

...	
while (items_in_buffer == 0) {	
 cond_wait(&item_available, &m);  
...

23

No while; just an if?
void consumer(void)  
{  
 mutex_lock(&m);  
 if (items_in_buffer == 0)  
 cond_wait(&item_available, &m);  
 /* Consume item */  
 items_in_buffer--;  
 cond_signal(&space_available);  
 mutex_unlock(&m);  
}	
	
void producer(void)  
{  
 mutex_lock(&m);  
 ...	
 items_in_buffer++;  
 cond_signal(&item_available);  
 mutex_unlock(&m);  
}

24

No while; just an if?
mutex_lock(&m);  
if (items_in_buffer == 0)  
 cond_wait(&item_available, &m);  
 	
	
	
	
	
	
	
	
	
	
	
	
	
	
/* Consume item */  
items_in_buffer--;  
cond_signal(&space_available);  
mutex_unlock(&m);	

T1

mutex_lock(&m);  
...	
items_in_buffer++; /* Produce item */
cond_signal(&item_available);  
mutex_unlock(&m);

T2

mutex_lock(&m);  
if (items_in_buffer == 0)  
 cond_wait(&item_available, &m);	
/* Consume item */  
items_in_buffer--;  
cond_signal(&space_available);  
mutex_unlock(&m);	

T3

Blocked on
condition

Blocked on
acquiring mutex
(inside cond_wait())

ERROR: Item already consumed!

25

Readers-Writers
with Condition Variables

26

Readers-Writers Problem

Generalization of the mutual exclusion problem

Problem statement:
•  Reader threads only read the object
•  Writer threads modify the object
•  Writers must have exclusive access to the object
•  Unlimited number of readers can access the object

Reader Writer
Reader OK No
Writer No No T

hr
ea

d
1

Thread 2

27

void writer(void)  
{  
 while (1) {  
 sem_wait(&w);  
 
 /* Critical section */  
 /* Writing here */  
 
 sem_post(&w);  
 }  
}

Writers:

	
int readcnt; /* Initially = 0 */  
sem_t mutex, w; /* Both initially = 1 */  

Shared:

Recall: Semaphore solution

28

(full code
online)

void reader(void)  
{  
 while (1) {  
 sem_wait(&mutex);  
 readcnt++;  
 if (readcnt == 1) /* First reader in */  
 sem_wait(&w); /* Lock out writers */  
 sem_post(&mutex);  
 
 /* Main critical section */  
 /* Reading would happen here */  
 
 sem_wait(&mutex);  
 readcnt--;  
 if (readcnt == 0) /* Last out */  
 sem_post(&w); /* Let in writers */  
 sem_post(&mutex);  
 }  
}

Readers:

Recall: Semaphore solution

29

Condition variable solution

Idea:
•  If it’s safe, just go ahead and read or write
•  Otherwise, wait for my “turn”

Initialization:
/* Global variables */  
pthread_mutex_t m;  
pthread_cond_t turn; /* Event: it's our turn */  
int writing;  
int reading;  
  
void init(void) {  
 pthread_mutex_init(&m, NULL);  
 pthread_cond_init(&turn, NULL);  
 reading = 0;  
 writing = 0;  
}  

30

Condition variable solution

void reader(void)  
{  
 mutex_lock(&m);  
 while (writing)  
 cond_wait(&turn, &m);  
 reading++;  
 mutex_unlock(&m);  
 
 /* Reading here */  
 
 mutex_lock(&m);  
 reading--;  
 cond_signal(&turn);  
 mutex_unlock(&m);  
}  

void writer(void)  
{  
 mutex_lock(&m);  
 while (reading || writing)  
 cond_wait(&turn, &m);  
 writing++;  
 mutex_unlock(&m);  
 
 /* Writing here */  
 
 mutex_lock(&m);  
 writing--;  
 cond_signal(&turn);  
 mutex_unlock(&m);  
}

(Note: “pthread_” prefix removed from all
synchronization calls for compactness)

31

Familiar problem: Starvation

void reader(void)  
{  
 mutex_lock(&m);  
 while (writing)  
 cond_wait(&turn, &m);  
 reading++;  
 mutex_unlock(&m);  
 
 /* Reading here */  
 
 mutex_lock(&m);  
 reading--;  
 cond_signal(&turn);  
 mutex_unlock(&m);  
}  

void writer(void)  
{  
 mutex_lock(&m);  
 while (reading || writing)  
 cond_wait(&turn, &m);  
 writing++;  
 mutex_unlock(&m);  
 
 /* Writing here */  
 
 mutex_lock(&m);  
 writing--;  
 cond_signal(&turn);  
 mutex_unlock(&m);  
}

(Note: “pthread_” prefix removed from all
synchronization calls for compactness)

32

Idea: take turns

If a writer is waiting, then reader should wait its turn
•  Even if it’s safe to proceed (only readers are in critical section)

Requires keeping track of waiting writers

/* Global variables */  
pthread_mutex_t m;  
pthread_cond_t turn; /* Event: someone else's turn */  
int reading;  
int writing;  
int writers;  
  
void init(void) {  
 pthread_mutex_init(&m, NULL);  
 pthread_cond_init(&turn, NULL);  
 reading = 0;  
 writing = 0;  
 writers = 0;  
}

33

Taking turns

void reader(void)  
{  
 mutex_lock(&m);  
 if (writers)  
 cond_wait(&turn, &m);	
 while (writing)  
 cond_wait(&turn, &m);  
 reading++;  
 mutex_unlock(&m);  
 
 /* Reading here */  
 
 mutex_lock(&m);  
 reading--;  
 cond_signal(&turn);  
 mutex_unlock(&m);  
}  

void writer(void)  
{  
 mutex_lock(&m);  
 writers++;	
 while (reading || writing)  
 cond_wait(&turn, &m);  
 writing++;  
 mutex_unlock(&m);  
 
 /* Writing here */  
 
 mutex_lock(&m);  
 writing--;  
 writers--;	
 cond_signal(&turn);  
 mutex_unlock(&m);  
}

34

void reader(void)  
{  
 mutex_lock(&m);  
 if (writers)  
 cond_wait(&turn, &m);	
 while (writing)  
 cond_wait(&turn, &m);  
 reading++;  
 mutex_unlock(&m);  
 
 /* Reading here */  
 
 mutex_lock(&m);  
 reading--;  
 cond_signal(&turn);  
 mutex_unlock(&m);  
}  

Another problem :-(

void writer(void)  
{  
 mutex_lock(&m);  
 writers++;	
 while (reading || writing)  
 cond_wait(&turn, &m);  
 writing++;  
 mutex_unlock(&m);  
 
 /* Writing here */  
 
 mutex_lock(&m);  
 writing--;  
 writers--;	
 cond_signal(&turn);  
 mutex_unlock(&m);  
}

Only unblocks one thread at a time;
Inefficient if many readers are waiting

35

void reader(void)  
{  
 mutex_lock(&m);  
 if (writers)  
 cond_wait(&turn, &m);	
 while (writing)  
 cond_wait(&turn, &m);  
 reading++;  
 mutex_unlock(&m);  
 
 /* Reading here */  
 
 mutex_lock(&m);  
 reading--;  
 cond_broadcast(&turn);  
 mutex_unlock(&m);  
}  

Easy solution: Wake everyone

void writer(void)  
{  
 mutex_lock(&m);  
 writers++;	
 while (reading || writing)  
 cond_wait(&turn, &m);  
 writing++;  
 mutex_unlock(&m);  
 
 /* Writing here */  
 
 mutex_lock(&m);  
 writing--;  
 writers--;	
 cond_broadcast(&turn);  
 mutex_unlock(&m);  
}

36

Pitfalls

signal() before wait()
•  Logical error: Waiting thread will miss the signal

Fail to lock mutex before calling wait()
•  Might return error, or simply not block

if (!condition) wait(); instead of while (!condition) wait();

•  condition may still be false when wait returns!
•  can lead to arbitrary errors (e.g., following NULL pointer, memory

corruption, ...)

Forget to unlock mutex
•  uh oh...

37

Forgetting to unlock the mutex

m
reader
thread

void reader(void)  
{  
 mutex_lock(&m);  
 if (writers)  
 cond_wait(&turn, &m);	
 while (writing)  
 cond_wait(&turn, &m);  
 reading++;  
 mutex_unlock(&m);  
 
 /* Reading here */  
 
 mutex_lock(&m);  
 reading--;  
 cond_broadcast(&turn);  
 mutex_unlock(&m);  
}	
	
while (1) { reader() };

Waiting for

held by

After running once,
next time reader calls
mutex_lock(&m):

38

Forgetting to unlock the mutex

m
reader
thread

Waiting for

held by

After running once,
next time reader calls
mutex_lock(&m):

DEADLOCK
thread waits forever
for event that will
never happen

39

Semaphores vs. Condition Variables

Semaphore
•  Integer value (≥ 0)
•  Wait doesn’t always block
•  Signal either un-blocks thread

or increments counter
•  If signal releases thread, both

may continue concurrently

Condition Variable
•  No value
•  Wait always blocks
•  Signal either un-blocks thread

or is lost
•  If signal releases thread, only

one continues
  Need to hold mutex lock

to proceed
  Other thread is released

from waiting on condition,
but still has to wait to
obtain the mutex again

40

Conclusion

Condition variables
•  convenient way of signaling general-purpose events between threads

Common implementation: “monitors”
•  An object which does the locking/unlocking for you when its methods

are called
•  See synchronized keyword in Java

Beware pitfalls...
•  especially deadlock: our next topic

