
1

Using Semaphores

CS 241

March 14, 2012

University of Illinois

Slides adapted in part from material accompanying Bryant & O’Hallaron,
“Computer Systems: A Programmer's Perspective”, 2/E

2

Announcements

MP6 released

Today
•  A few midterm problems
•  Using semaphores: the producer-consumer problem
•  Using semaphores: the readers-writers problem

3

Midterm problem discussion

4

Using Semaphores

5

Before: Basic use of semaphores

void * worker(void *ptr)  
{  
 int i;  
 for (i = 0; i < ITERATIONS_PER_THREAD; i++) {  
 sem_wait(&cnt_mutex);  
 cnt++;  
 sem_post(&cnt_mutex);  
 }  
}	

6

Today: Advanced use of semaphores

[Monty Python’s Flying Circus]

7

Using semaphores:
The Producer-Consumer Problem

8

Producer-consumer problem

Chefs cook items and put them on a
conveyer belt

Waiters pick items off the belt

9

Producer-consumer problem

Now imagine many chefs!

...and many waiters!

10

Producer-consumer problem

A potential mess!

11

Producer-consumer problem
Chef (Producer) Waiter (Consumer)

inserts items removes items

Shared resource:
bounded buffer

Efficient implementation:
circular fixed-size buffer

12

Shared buffer
Chef (Producer) Waiter (Consumer)

13

Shared buffer

insertPtr

removePtr

What does the
chef do with a

new pizza?

Where does the
waiter take a pizza

from?

Chef (Producer) Waiter (Consumer)

14

Shared buffer

insertPtr

removePtr

Insert pizza

insertPtr

Chef (Producer) Waiter (Consumer)

15

Shared buffer

insertPtr

removePtr

Insert pizza

Chef (Producer) Waiter (Consumer)

16

Shared buffer

insertPtr

removePtr

Insert pizza

Chef (Producer) Waiter (Consumer)

17

Shared buffer

insertPtr

removePtr

Remove pizza

removePtr

Chef (Producer) Waiter (Consumer)

18

Shared buffer

insertPtr

removePtr

Insert pizza

Chef (Producer) Waiter (Consumer)

19

Shared buffer

insertPtr

removePtr

Insert pizza

Chef (Producer) Waiter (Consumer)

20

Shared buffer

insertPtr

removePtr

BUFFER FULL:
Producer must wait!

Insert pizza

Chef (Producer) Waiter (Consumer)

21

Shared buffer

insertPtr removePtr
Remove pizza

Chef (Producer) Waiter (Consumer)

22

Shared buffer

insertPtr

removePtr

Remove pizza

Chef (Producer) Waiter (Consumer)

23

Shared buffer

insertPtr

removePtr

Remove pizza

Chef (Producer) Waiter (Consumer)

24

Shared buffer

insertPtr

removePtr

Remove pizza

Chef (Producer) Waiter (Consumer)

25

Shared buffer

insertPtr

removePtr

Remove pizza

Chef (Producer) Waiter (Consumer)

26

Shared buffer

insertPtr

removePtr

Remove pizza

Chef (Producer) Waiter (Consumer)

27

Shared buffer

insertPtr

removePtr

Remove pizza

Chef (Producer) Waiter (Consumer)

28

Shared buffer

insertPtr
removePtr

Buffer empty:
Consumer must be
blocked!

Remove pizza

Chef (Producer) Waiter (Consumer)

29

Designing a solution
Chef (Producer) Waiter (Consumer)

Wait for empty slot
Insert item
Signal item arrival

Wait for item arrival
Remove item

Signal empty slot available

What synchronization do we need?

30

Designing a solution
Chef (Producer) Waiter (Consumer)

Wait for empty slot
Insert item
Signal item arrival

Wait for item arrival
Remove item

Signal empty slot available

What synchronization do we need?

Mutex
(shared buffer)

31

Designing a solution
Chef (Producer) Waiter (Consumer)

Wait for empty slot
Insert item
Signal item arrival

Wait for item arrival
Remove item

Signal empty slot available

What synchronization do we need?

Semaphore
(# empty slots)

32

Designing a solution
Chef (Producer) Waiter (Consumer)

Wait for empty slot
Insert item
Signal item arrival

Wait for item arrival
Remove item

Signal empty slot available

What synchronization do we need?

Semaphore
(# filled slots)

33

Producer-Consumer Code

buffer[insertPtr] =
data;

insertPtr = (insertPtr
+ 1) % N;

result =
buffer[removePtr];

removePtr = (removePtr
+1) % N;

Critical Section: move
insert pointer

Critical Section: move
remove pointer

34

Producer-Consumer Code

sem_wait(&slots);

mutex_lock(&mutex);

buffer[insertPtr] =
data;

insertPtr = (insertPtr +
1) % N;

mutex_unlock(&mutex);

sem_post(&items);

sem_wait(&items);

mutex_lock(&mutex);

result =
buffer[removePtr];

removePtr = (removePtr
+1) % N;

mutex_unlock(&mutex);

sem_post(&slots);

Block if
there are
no free
slots

Block if
there are
no items

to
take

Counting semaphore – check
and decrement the number of
free slots

Counting semaphore – check
and decrement the number of
available items

Done – increment the number
of available items

Done – increment the number
of free slots

35

Consumer Pseudocode: getItem()

sem_wait(&items);

pthread_mutex_lock(&mutex);

result = buffer[removePtr];

removePtr = (removePtr +1) % N;

pthread_mutex_unlock(&mutex);

sem_signal(&slots);

Error checking/EINTR handling not shown

36

Producer Pseudocode: putItem(data)

sem_wait(&slots);

pthread_mutex_lock(&mutex);

buffer[insertPtr] = data;

insertPtr = (insertPtr + 1) % N;

pthread_mutex_unlock(&mutex);

sem_signal(&items);

Error checking/EINTR handling not shown

37

Readers-Writers Problem

38

Readers-Writers Problem

Generalization of the mutual exclusion problem

Problem statement:
•  Reader threads only read the object
•  Writer threads modify the object
•  Writers must have exclusive access to the object
•  Unlimited number of readers can access the object

Occurs frequently in real systems, e.g.,
•  Online airline reservation system
•  Multithreaded caching Web proxy

39

Variants of Readers-Writers

Favor readers
•  No reader waits unless a writer is already in critical section
•  A reader that arrives after a waiting writer gets priority over writer

Favor writers
•  Once a writer is ready to write, it performs its write as soon as possible
•  A reader that arrives after a writer must wait, even if the writer is also

waiting

Starvation (thread waits indefinitely) possible in both cases
•  Q: How could we fix this?

40

void writer(void)  
{  
 while (1) {  
 sem_wait(&w);  
 
 /* Critical section */  
 /* Writing here */  
 
 sem_post(&w);  
 }  
}

Writers:

	
int readcnt; /* Initially = 0 */  
sem_t mutex, w; /* Both initially = 1 */  

Shared:

Solution favoring readers

41

(full code
online)

void reader(void)  
{  
 while (1) {  
 sem_wait(&mutex);  
 readcnt++;  
 if (readcnt == 1) /* First reader in */  
 sem_wait(&w); /* Lock out writers */  
 sem_post(&mutex);  
 
 /* Main critical section */  
 /* Reading would happen here */  
 
 sem_wait(&mutex);  
 readcnt--;  
 if (readcnt == 0) /* Last out */  
 sem_post(&w); /* Let in writers */  
 sem_post(&mutex);  
 }  
}

Readers:

Solution favoring readers

42

Summary

Synchronization: more than just locking a critical section

Semaphores useful for counting available resources
•  sem_wait(): wait for resource only if none available
•  sem_post(): signal availability of another resource

Multiple semaphores / mutexes can work together to solve
complex problems

