
1

CS 241

March 12, 2012

Copyright © University of Illinois
CS 241 Staff

Achieving Synchronization
or
How to Build a
Semaphore

2

Announcements

MP5 due tomorrow

Jelly beans...

Today
•  Building a Semaphore
•  If time: A few midterm problems

3

Review: Semaphores

Problem: coordinating simultaneous access to shared data

Solution: mutually exclusive access to critical region
•  Only one thread/process accesses shared data at a time

int cnt = 0;  
 
void * worker(void *ptr)  
{  
 int i;  
 for (i = 0; i < ITERATIONS_PER_THREAD; i++)  
 cnt++;  
}	

Critical section
(just one line in this simple example)

Shared data

4

Semaphores for mutual exclusion

Basic idea
•  Associate a unique semaphore mutex, initially 1, with each shared

variable (or related set of shared variables)
•  Surround corresponding critical sections with wait(mutex) and

 post(mutex) operations.

Terminology
•  Binary semaphore: semaphore whose value is always 0 or 1"
•  Mutex: binary semaphore used for mutual exclusion

  wait operation: “locking” the mutex
  post operation: “unlocking” or “releasing” the mutex
  “Holding” a mutex: locked and not yet unlocked

•  Counting semaphore: used to count a set of available resources

5

goodcounter.c: good synchronization
#include <semaphore.h>  
 
...  
 
int cnt = 0;  
sem_t cnt_mutex;  
 
int main(void)  
{  
 ...  
 /* Initialize mutex */  
 sem_init(&cnt_mutex, 0, 1);	
 ...	
}	
	
void * worker(void *ptr)  
{  
 int i;  
 for (i = 0; i < ITERATIONS_PER_THREAD; i++) {  
 sem_wait(&cnt_mutex);  
 cnt++;  
 sem_post(&cnt_mutex);  
 }  
}	

Necessary include

Declare mutex

Initialize to 1

Surround critical section

6

How do we build mutual exclusion?

lock();	
	
critical_section();  
	
unlock();	

What goes here?

Assumption for remainder of lecture:
Above code is run simultaneously in multiple threads/processes

7

Mutual Exclusion Solutions

Software-only candidate solutions
•  Lock variables
•  “Turn”
•  “Two flag and turn”

Hardware solutions
•  Test-and-set / swap

Semaphores

8

Lock Variables

int lock = 0;
...
while (lock) {
 /* spin spin spin spin */

}
lock = 1;

critical_section();

lock = 0;

9

Lock Variables

int lock = 0;
...
while (lock) {
 /* spin spin spin spin */

}
lock = 1;

critical_section();

lock = 0;

lock = 1

lock = 0

lock = 1

lock = 1

No mutual exclusion!

10

Turn-based mutual exclusion

pthread_t turn = first_thread_id;

...

while (turn != my_thread_id) {

 /* wait your turn */

}

critical_section();

turn = other_thread_id;

…

11

pthread_t turn = first_thread_id;

...

while (turn != my_thread_id) {

 /* wait your turn */

}

critical_section();

turn = other_thread_id;

…

Turn-based mutual exclusion

turn = 0
Process 0 Process 1

turn = 1

No progress!
Other process
may not be executing
in this critical section.

12

Two Flag and Turn Mutual Exclusion
owner[0] = false
owner[1] = false
turn = 0

true ×
true ×

1 × 0 ×
int owner[2]={false, false};
int turn;
…
owner[my_process_id] = true;
turn = other_process_id;
while (owner[other_process_id] &&
 turn == other_process_id) {
 /* wait your turn */
}

critical_section();

owner[my_process_id] = false;
…

Progress &
mutual exclusion!
“Peterson’s solution”

13

Are we done?

Peterson’s algorithm works, but...

Problem: software solutions can be slow
•  at just the moment we’d like to be fast: contention for shared resource
•  Solution: hardware support

14

Atomic Test and Set Instruction

boolean test_and_set(boolean* lock) atomic {

 boolean initial = *lock;

 *lock = true;

 return initial;

}

atomic = executed without interruption

15

Test and Set for mutual exclusion

boolean lock = 0;

while (test_and_set(&lock))

 ;

critical_section();

lock = 0;

16

Understanding Test and Set

boolean test_and_set(boolean* lock) atomic {
 boolean initial = *lock;
 *lock = true;
 return initial;
}
	

boolean test_and_set(boolean* lock) atomic {
 if (*lock == 1)
 return 1; // failure
 else {
 *lock = 1;
 return 0; // success
 }
}
	

Original

Functionally
equivalent
version

17

Test and Set for mutual exclusion

boolean lock = 0;

while (test_and_set(&lock))

 ;

critical_section();

lock = 0;

Remaining problem: busy-waiting

18

Now are we done?

Hardware solutions are fast, but...

Problem: starvation
•  No guarantee about which process “wins” the test-and-set race
•  It’ll eventually happen, but a process could wait indefinitely

Problem: deadlock
•  Proc. 1 enters critical section, gets interrupted by higher priority Proc. 2
•  P1 can’t make progress: waiting to run until P2 is done
•  P2 can’t make progress: busy-waiting until P1 exits critical section

Problem: busy-waiting
•  Critical section might be arbitrarily long
•  Waiting processes all still spend CPU time!

These problems occur for software solutions too

Solution: Semaphores

19

Semaphores vs. Test and Set

semaphore s = 1;

...

sem_wait(&s);

critical_section();

sem_post(&s);

lock = 0;

...

while(test_and_set(&lock)

 ;

critical_section();

lock = 0;

Semaphore Test and Set

The magic: avoid busy-waiting
during sem_wait()

20

Inside a Semaphore

Add a waiting queue

Multiple process waiting on s
•  Wake up one of the blocked

processes upon getting a
signal

Semaphore data structure

typedef struct {

 int count;

 queue_t waiting;

} semaphore_t;

21

Binary Semaphores

void sem_wait_B (bsem* s) {
 if (s.value == 1)
 s.value = 0;
 else {
 place current process in s->queue;
 block current process;
 }
}
	

typedef struct bsemaphore {
 enum {0,1} value;
 queue_t queue;
} bsem_t;
	

22

Binary Semaphores

typedef struct bsemaphore {
 enum {0,1} value;
 queue_t queue;
} bsem_t;
	

void sem_post_B (bsem* s) {
 if (s->queue is empty())
 s->value = 1;
 else {
 remove process P from s->queue;
 place P on ready list;
 }
}

	

23

General Semaphore

void semSignal(semaphore_t* s) {

 s.count++;

 if (s.count ≤ 0) {

 remove P from s.queue;

 place P on ready list;

 }

}

void sem_wait(semaphore_t* s) {
 s.count--;
 if (s.count < 0) {
 place P in s->queue;
 block P;
 }

}

typedef struct {
 int count;
 queue_t queue;
} semaphore_t;
	

24

Making the operations atomic

Isn’t this exactly the problem semaphores were trying to solve?
•  Are we stuck??!

Solution: resort to test and set:

typedef struct {

 boolean lock;

 int count;

 queueType queue;

} semaphore_t;

void sem_wait(semaphore_t* s) {
 while (test_and_set(lock)) { }
 s.count--;
 if (s.count < 0) {
 place P in s.queue;
 block P;
 }
 lock = 0;
}

25

Making the operations atomic

Busy-waiting again!

How are semaphores better than just test-and-set?

T&S: Busy-wait until ready to run
•  Could be arbitrarily long!
•  We’re waiting for other processes which may be in long critical sections

Semaphores: Busy-wait just during sem_wait, sem_post
•  Now we’re waiting for other processes which are doing very short

operations (sem_wait, sem_post)

26

Summary

Mutual exclusion possible in software

Mutual exclusion faster in hardware
•  Common atomic instruction: test_and_set

Hardware operations used to bootstrap semaphores
•  ...which block processes to avoid busy-waiting and can select which ones

to un-block

Next time: Classic applications of mutual exclusion

