
1

Midterm Review

CS 241

March 5, 2012

Copyright © University of Illinois CS 241 Staff

2

Announcements

Midterm exam: Tomorrow (Tue), 7 – 9 pm

Location according to last name
•  A-Liang: 1404 SC
•  Lim-Z: 1320 DCL

Discussion this week? YES

Lecture on Friday? NO

Today
•  All yours
•  Special requests: Page tables, page faults, MMU, page tables, TLB, page

tables, multilevel page tables, ...
•  Malloc algorithms
•  Synchronization

3

Virtual memory: key concept review

Virtual memory
•  Memory addresses used by an application
•  Unrelated to physical address
•  May not even be stored in physical memory

Physical memory
•  The RAM in your computer

Memory Management Unit (MMU)
•  Hardware which translates virtual to physical addresses every time any

program accesses any memory

4

Virtual memory: key concept review

Page
•  Unit in which OS allocates memory to applications
•  MMU also works in units of pages

Page table
•  Data structure used by MMU to remember virtual-to-physical mapping
•  One per process (why?)
•  Created by OS, stored in memory (top level, at least)
•  (What events modify the page table?)

Translation Lookaside Buffer (TLB)
•  Cache of virtual-to-physical mappings
•  Faster than extra memory references needed to look up in page table
•  Must be flushed when switching between apps

5

Virtual memory: key concept review

Multilevel page table
•  Top level page table points to other page tables rather than individual

pages
•  What is the point of this?

Segmentation fault
•  Program accesses memory outside the segments that it is allowed to

access (e.g., deref NULL, write past end of heap, etc.)

Page faults
•  Happen when the virtual page (which the application is trying to access)

is not currently mapped to a valid physical page
•  Seg fault is one kind of page fault
•  When is a page fault “normal”?

6

From practice exam

Consider the following code segment:

 void *ptr = malloc(1024 * sizeof(char));
 printf("%p", ptr);

When this program is run as two separate processes, you notice the following output:

 Process #1: 0x49301240
 Process #2: 0xac382ac0

Based on the output above, what can be determined about the address contained in ptr?

A.  The address of Process #1 is located before the address of Process #2 in
physical memory.

B.  The address of Process #2 is located before the address of Process #1 in
physical memory.

C.  The address of Process #1 and Process #2 is located in the same physical
memory.

D.  None of the above.

7

Address translation: single PT

x = 5;

store 5 in: 01010110 01010011 01011010 10100010

How is this translated?

Need:
•  Size of a page = 4 KB (our starting assumption; varies across different

hardware architectures)
•  Size of page table: # entries = 232 / 4 KB = 220

•  Size of a page table: # bytes = 220 * 4 bytes = 222 bytes
•  Offset size (# bits of offset in virtual address) = 12 bits
•  Virtual page number size = 32 – 12 = 20 bits
•  Page table data structure

Virtual page number Offset

8

Address translation: 2-level PT

x = 5;

store 5 in 0101011 0101001 01011010 10100010

How is this translated?

