
1

Synchronization

CS 241

March 2, 2012

Copyright © University of Illinois
CS 241 Staff

Slides adapted in part from material accompanying Bryant &
O’Hallaron, “Computer Systems: A Programmer's
Perspective”, 2/E

2

Announcements

MP4 due tonight

Midterm
•  Next Tuesday, 7-9 p.m.
•  Study guide and practice exam released Wednesday

PPT?

3

Do threads conflict in practice?

#include <stdio.h>  
#include <stdlib.h>  
#include <pthread.h>  
#include <assert.h>  
 
#define NUM_THREADS 2  
#define ITERATIONS_PER_THREAD 5000000  
 
int cnt = 0;  
 
void * worker(void *ptr)  
{  
 int i;  
 for (i = 0; i < ITERATIONS_PER_THREAD; i++)  
 cnt++;  
}	

4

Do threads conflict in practice?

int main(void)  
{  
 pthread_t threads[NUM_THREADS];  
 int i, result;  
 
 /* Start threads */  
 for (i = 0; i < NUM_THREADS; i++) {  
 result = pthread_create(&threads[i], NULL, worker, NULL);  
 assert(result == 0);  
 }  
 
 /* Wait for threads to finish */  
 for (i = 0; i < NUM_THREADS; i++) {  
 result = pthread_join(threads[i], NULL);  
 assert(result == 0);  
 }  
 
 printf("Final value: %d (%.2f%%)\n", cnt,	
 100.0 * cnt / (NUM_THREADS * (double)ITERATIONS_PER_THREAD));  
}  
	

5

Do threads conflict in practice?

If everything worked...

Q: What are the minimum and maximum final value?

Q: What value do you expect in practice?

$./20-counter 	
Final value: 100000	

6

Assembly Code for Counter Loop

 movl (%rdi),%ecx
 movl $0,%edx
 cmpl %ecx,%edx
 jge .L13

.L11:
 movl cnt(%rip),%eax
 incl %eax
 movl %eax,cnt(%rip)
 incl %edx
 cmpl %ecx,%edx
 jl .L11

.L13:

Corresponding assembly code

for (i=0; i < 50000; i++)
 cnt++;

C code for counter loop for thread i

Head (Hi)

Tail (Ti)

Load cnt (Li)
Update cnt (Ui)
Store cnt (Si)

Critical section:
reading or writing
shared variable

7

Key idea: In general, any sequentially consistent interleaving is
possible, but some give an unexpected result!

•  Ii denotes that thread i executes instruction I
•  %eaxi is the content of %eax in thread i’s context

H
L
U
S
T

H
L
U
S

T

-
0
1
1
1
1
1
1
1
1

0
0
0
1
1
1
1
2
2
2

Thread 1 Thread 2 cnt %eax1

OK!

-
-
-
-
-
1
2
2
2
-

%eax2

Thread 1
critical section

Thread 2
critical section

Concurrent execution

8

Incorrect ordering: two threads increment the counter, but the
result is 1 instead of 2

H
L

U
S
T

H
L
U

S
T

-
0
1
1
1
1
-
-
-
-

0
0
0
0
0
1
1
1
1
1

Thread 1 Thread 2 cnt %eax1

Oops!

-
-
-
-
0
1
1
1
1
-

%eax2

Thread 1
critical section

Thread 2
critical section

Concurrent execution (example 2)

9

Progress Graphs

A progress graph depicts
the discrete execution
state space of concurrent
threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2) denotes state
where:
thread 1 has completed L1 and
thread 2 has completed S2.

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2)

10

Progress Graphs

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2
A trajectory is a sequence of legal
state transitions that describes one
possible concurrent execution of the
threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

11

Critical Sections and Unsafe Regions

L, U, and S form a critical
section with respect to the
shared variable cnt

Instructions in critical
sections (wrt to some shared
variable) should not be
interleaved

Sets of states where such
interleaving occurs form
unsafe regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

12

Critical Sections and Unsafe Regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Unsafe region

A trajectory is safe if and only if it
does not enter any unsafe region

Claim: A trajectory is correct
(w.r.t. variable cnt) iff it is safe

unsafe

safe

critical
section

wrt
cnt

critical section wrt cnt

13

Enforcing mutual exclusion

How can we guarantee a safe trajectory?

Answer: We must synchronize the execution of the threads so
that they never have an unsafe trajectory.

•  i.e., need to guarantee mutually exclusive access to critical regions
•  provides a sufficient condition for correctness

Classic solution
•  Semaphores (Edsger Dijkstra) (pthreads)

Other approaches
•  Mutexes, and condition variables (pthreads)
•  Locks and rwlocks (pthreads)
•  Monitors (Java)

14

Semaphores

photo: Les Meloures / wikimedia

15

Semaphores
A non-negative global integer synchronization variable

Manipulated by wait and post operations:
•  wait(s): [while (s == 0) wait(); s--;]

  Also P(s), Dutch for "Proberen" (test)
•  post(s): [s++;]

  Also V(s), Dutch for "Verhogen" (increment)

OS kernel guarantees that operations between brackets [] are
executed indivisibly

•  i.e., s-- can’t be broken into load/update/store
•  Result: only one wait or post operation at a time can modify s
•  When while loop in wait terminates, only that wait can decrement s

Semaphore invariant: (s >= 0)

16

C Semaphore Operations

pthreads functions:
#include <semaphore.h>

int sem_init(sem_t *sem, 0, unsigned int val);} /* s = val */

int sem_wait(sem_t *s);
int sem_post(sem_t *s);

17

Back to the counter...

#include <stdio.h>  
#include <stdlib.h>  
#include <pthread.h>  
#include <assert.h>  
 
#define NUM_THREADS 2  
#define ITERATIONS_PER_THREAD 50000  
 
int cnt = 0;  
 
void * worker(void *ptr)  
{  
 int i;  
 for (i = 0; i < ITERATIONS_PER_THREAD; i++)  
 cnt++;  
}	

How can we fix this using semaphores?

18

Semaphores for mutual exclusion

Basic idea
•  Associate a unique semaphore mutex, initially 1, with each shared

variable (or related set of shared variables)
•  Surround corresponding critical sections with wait(mutex) and

 post(mutex) operations.

Terminology
•  Binary semaphore: semaphore whose value is always 0 or 1"
•  Mutex: binary semaphore used for mutual exclusion

  wait operation: “locking” the mutex
  post operation: “unlocking” or “releasing” the mutex
  “Holding” a mutex: locked and not yet unlocked

•  Counting semaphore: used to count a set of available resources

19

goodcounter.c: good synchronization
#include <semaphore.h>  
 
...  
 
int cnt = 0;  
sem_t cnt_mutex;  
 
int main(void)  
{  
 ...  
 /* Initialize mutex */  
 sem_init(&cnt_mutex, 0, 1);	
 ...	
}	
	
void * worker(void *ptr)  
{  
 int i;  
 for (i = 0; i < ITERATIONS_PER_THREAD; i++) {  
 sem_wait(&cnt_mutex);  
 cnt++;  
 sem_post(&cnt_mutex);  
 }  
}	

Necessary include

Declare mutex

Initialize to 1

Surround critical section

20

Unsafe region

Why Mutexes Work
Provide mutually exclusive
access to shared variable by
surrounding critical section
with wait and post operations
on semaphore s (initially set to
1)

Semaphore invariant
creates a forbidden region
that encloses the unsafe region
that must not be entered by
any trajectory.

H1 wait(s) post(s) T1
Thread 1

Thread 2

L1 U1 S1

H2

wait(s)

post(s)

T2

L2

U2

S2

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0 -1 -1 -1 -1 0 0

0 0

-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

Forbidden region

21

Discussion

Mutual exclusion changes scheduling between threads
•  Previously: Schedule could be anything
•  With mutual exclusion: Schedule is constrained

Q: Since scheduling is constrained, which thread goes first,
Thread 1 or Thread 2?

A: We still have no clue
•  mutex only ensures two threads aren’t in critical section at one time
•  otherwise scheduling is still arbitrary
•  and that’s fine with us

22

Better synchronization!
int main(void)  
{  
 ...  
 /* Initialize mutex */  
 result = sem_init(&cnt_mutex, 0, 1);  
 if (result < 0)	
 exit(-1);	
	
 ...	
	
 /* Clean up the semaphore that we're done with */ 
 result = sem_destroy(&cnt_mutex);  
 assert(result == 0);	
}	

Check for errors on
each call

Clean up resources

23

Why bother checking for errors?

Without error handling, your code might:
•  Crash rather than exiting gracefully
•  Keep working for a while, crash later
•  Sometimes fail randomly, but usually work fine

  Hard to reproduce: even harder to debug
•  Fail when it might have recovered from the error cleanly!

At a minimum, error handling converts a messy failure into a
clean failure

•  Program terminates, but you know what caused it to terminate

24

Some errors are recoverable
void * worker(void *ptr)  
{  
 int i;  
 for (i = 0; i < ITERATIONS_PER_THREAD; i++) {  
 while (sem_wait(&cnt_mutex) < 0)  
 if (errno != EINTR)  
 exit(-1);  
 cnt++;  
 if (sem_post(&cnt_mutex) < 0)  
 exit(-1);  
 }  
}  
	

25

Much more in the Director’s Cut

Options
•  Named semaphores
•  Semaphores shared between processes

Other functions / variants
•  sem_trywait
•  sem_timedwait
•  semctl

Other mutual exclusion functions
•  pthread_mutex_init
•  PTHREAD_MUTEX_INITIALIZER
•  pthread_mutex_lock / trylock / unlock
•  pthread_mutex_destroy
•  ...

26

Summary

Programmers need a clear model of how variables are
shared by threads

•  Cannot reason about all possible interleavings of threads

Variables shared by multiple threads must be protected to
ensure mutually exclusive access

Semaphores are a fundamental mechanism for enforcing
mutual exclusion

27

Summary

This cat did not check for
exceptional cases This cat did.

