Synchronization

CS 24|

March 2, 2012

Announcements

MP4 due tonight

Midterm
* Next Tuesday, 7-9 p.m.

* Study guide and practice exam released Wednesday

PPT?

Do threads conflict in practice?

#include <stdio.h>

#include <stdlib.h>
#include <pthread.h>
#include <assert.h>

#define NUM_THREADS 2
#define ITERATIONS_PER_THREAD 5000000

int cnt = 0;

void * worker(void *ptr)
{
int 1;
for (1 = 0; 1 < ITERATIONS_PER_THREAD; 1i++)
cnt++;

Do threads conflict in practice?

int main(void)

{
pthread_t threads[NUM_THREADS];
int 1, result;

/* Start threads */

for (1 = @; 1 < NUM_THREADS; 1++) {
result = pthread_create(&threads[i], NULL, worker, NULL);
assert(result == 0);

}

/* Wait for threads to finish */

for (1 = @; 1 < NUM_THREADS; 1++) {
result = pthread_join(threads[i1], NULL);
assert(result == 0);

}

printf("Final value: %d (%.2f%%)\n", cnt,
100.0 * cnt / (NUM_THREADS * (double)ITERATIONS_PER_THREAD));

Do threads conflict in practice?

If everything worked...

$./20-counter
Final value: 100000

Q: What are the minimum and maximum final value!?

Q: What value do you expect in practice!

Assembly Code for Counter Loop

C code for counter loop for thread i

for (i=0;
cnt++;

i < 50000; i++)

Corresponding assembly code

.L13:

movl
movl

movl

$rdi) , $ecx
$0, %$edx
%$ecx, sedx

cnt (%rip) , Seax
$eax
%eax,cnt ($rip)

TTT T TTIner edx T T T T T T T T T

cmpl %ecx, Sedx
j1 .L11

. Head (H)

Load cnt (L) Critical section:
» Update cnt (U,) reading or writing
Store cnt (§) shared variable

. Tail (T)

Concurrent execution

Key idea: In general, any sequentially consistent interleaving is
possible, but some give an unexpected result!

* |. denotes that thread i executes instruction |
* %eax:is the content of %eax in thread i’s context

Thread | Thread 2 %eax, %eax, cnt
H - - 0 Thread |
L 0) 0 critical section
U I - 0
S | - | Thread 2
H I - I critical section
L I I I
U I 2 I
S I 2 2
T I 2 2 OoOK!
T I - 2

Concurrent execution (example 2)

Incorrect ordering: two threads increment the counter, but the
result is | instead of 2

Thread | Thread 2 %eax, %eax, cnt
H - - 0 Thread |
L 0 i 0 critical section
U I - 0
H | - 0 Thread 2
L I 0 0 critical section
S I I I
T - I I
U - I I
S - I I
- I

Oops!

Progress Graphs

Thread 2
@ o o
T2 (L}, Sy)
[[] o
S,
[o)
U,
@ o o
L,
[o o
H,
@ ¢ “— Thread |
H, L, U, S, T, A

A progress graph depicts
the discrete execution
state space of concurrent
threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst;, Inst,).

E.g.,(L,,S,) denotes state
where:

thread | has completed L, and
thread 2 has completed S,.

Progress Graphs

Thread 2
A trajectory is a sequence of legal
® ® @ ® @ state transitions that describes one
T, [possible concurrent execution of the
threads.
o o () o)
S, [Example:
1 ¢ ¢ ¢ ¢ HI,LI,Ul,H2,L2, SI,TI,U2,52,T2
U,
L,
H,

“— Thread |

Critical Sections and Unsafe Regions

Thread 2 o
L, U,and S form a critical
it o ° o o o section with respect to the
shared variable cnt
T,
9 ® ® ® ® ® Instructions in critical
S, sections (wrt to some shared
critical it o . . o . variable) should not be
section interleaved
Wt < U, Unsafe region
cnt T ° ° ° ° ° Sets of states where such
L, interleaving occurs form
\ unsafe regions
| o o | | [
H,
N ¢ ¢ ¢ ¢ *— Thread |
H, L, U, S T
N /
g

critical section wrt cnt

Critical Sections and Unsafe Regions

Thread 2

safe
® °

T A trajectory is safe if and only if it
2 does not enter any unsafe region

9 ® ®
S, | x Claim: A trajectory is correct
critical (w.r.t.variable cnt) iff it is safe
section
U
wrt 4 Y

cnt

[[[
Unsafe region Y

*’

L2 unsafe
N ® ®
H2
@ “— Thread |
H, L, U, S, T, b
N\ /
'

critical section wrt cnt

Enforcing mutual exclusion

How can we guarantee a safe trajectory!?

Answer: We must synchronize the execution of the threads so
that they never have an unsafe trajectory.

* i.e, need to guarantee mutually exclusive access to critical regions
* provides a sufficient condition for correctness

Classic solution
* Semaphores (Edsger Dijkstra) (pthreads)

Other approaches
* Mutexes, and condition variables (pthreads)
* Locks and rwlocks (pthreads)
* Monitors (Java)

14

7))
)
—
O
i -
Q.
©
=
),
N

Semaphores

A non-negative global integer synchronization variable

Manipulated by wait and post operations:
* wait(s): [while (s == 0) wait(); s--;]
= Also P(s), Dutch for "Proberen” (test)
* post(s): [s++;]
= Also V(s), Dutch for "Verhogen" (increment)

OS kernel guarantees that operations between brackets [] are
executed indivisibly

* i.e, s—- can’t be broken into load/update/store
* Result: only one wait or post operation at a time can modify s

* When while loop in wait terminates, only that wait can decrement s

Semaphore invariant: (s >= 0)

C Semaphore Operations

pthreads functions:

#include <semaphore.h>
int sem init (sem t *sem,

int sem wait (sem t *s);
int sem post(sem t *s);

0, unsigned int wval);}

/* s = val */

Back to the counter...

#include <stdio.h>

#include <stdlib.h>
#include <pthread.h>
#include <assert.h>

#define NUM_THREADS 2
#define ITERATIONS_PER_THREAD 50000

int cnt = 0;

void * worker(void *ptr)

o
int 1;
for (1 = 0; 1 < ITERATIONS_PER_THREAD; 1i++)
cnt++;

How can we fix this using semaphores!?

Semaphores for mutual exclusion

Basic idea

* Associate a unique semaphore mutex, initially 1, with each shared
variable (or related set of shared variables)

* Surround corresponding critical sections with wait(mutex) and

post(mutex) operations.

Terminology
* Binary semaphore: semaphore whose value is always 0 or 1
* Mutex: binary semaphore used for mutual exclusion
= wait operation: “locking” the mutex
= post operation: “unlocking” or “releasing” the mutex
= “Holding” a mutex: locked and not yet unlocked

* Counting semaphore: used to count a set of available resources

goodcounter.c: good synchronization

#include <semaphore.h>

int cnt = 0;
sem_t cnt_mutex;

int main(void)

{

}

/* Initialize mutex */
sem_init(&cnt_mutex, 0, 1);

void * worker(void *ptr)

{

int 1;

for (1 = 0; 1 < ITERATIONS_PER_THREAD; i++) {
sem_wait(&cnt_mutex);
cnt++;
sem_post(&cnt_mutex);

Necessary include

Declare mutex

Initialize to 1

Surround critical section

Why Mutexes Work

Thread 2
1 1 0 0 0 0 1 1 Provide mutually exclusive
' * * * * * * " access to shared variable by
T, T surrounding critical section
1 1 0 0 0 0 1 1) : .
' with wait and post operations
post(s) Forbidden region T on semaphore s (initially set to
p 0 ° 0 ° ° ° ° ° 0—>o 0 1)
-1 -1 11
y 1
L0 o0 0 el el e e L0 Semaphore invariant
u, Unsafe region T creates a forbidden region
0 .0 - 10 0 that encloses the unsafe region
L T that must not be entered by
2 -1 -1 -1 -1 '
o o . . 3 lo 0 any trajectory.
wait(s)
1 1 0 0 0 0 1 1
) ° ° 0 mmmmly ¢ mmm—) ¢ ===l @ °
, i
1 1 0 0 0 0 1 1
.%9 * * o . Thread I
7’ H, wait(s) L, U, S, post(s) T,
Initially

s = |

Mutual exclusion changes scheduling between threads

* Previously: Schedule could be anything
* With mutual exclusion: Schedule is constrained

Q: Since scheduling is constrained, which thread goes first,
Thread | or Thread 2?

A: We still have no clue
* mutex only ensures two threads aren’t in critical section at one time

* otherwise scheduling is still arbitrary

* and that’s fine with us

21

Better synchronization!

int main(void)

{

/* Initialize mutex */
result = sem_init(&cnt_mutex, 0, 1);
i1f (result < 0)

exit(-1);

/* Clean up the semaphore that we're done with */
result = sem_destroy(&cnt_mutex);
assert(result == 0);

Check for errors on
each call

Clean up resources

22

Why bother checking for errors?

Without error handling, your code might:
* Crash rather than exiting gracefully
* Keep working for a while, crash later
* Sometimes fail randomly, but usually work fine
= Hard to reproduce: even harder to debug

* Fail when it might have recovered from the error cleanly!

At a minimum, error handling converts a messy failure into a
clean failure

* Program terminates, but you know what caused it to terminate

23

Some errors are recoverable

void * worker(void *ptr)
{
int 1;
for (1 = 0; 1 < ITERATIONS_PER_THREAD; i++) {
while (sem_wait(&cnt_mutex) < @)
1f (errno != EINTR)
exit(-1);
cnt++;
1f (sem_post(&cnt_mutex) < @)
exit(-1);

24

Much more in the Director’'s Cut

Options
* Named semaphores
* Semaphores shared between processes

Other functions / variants
* sem_trywait
* sem_timedwait
* semctl

Other mutual exclusion functions

* pthread_mutex _init
PTHREAD MUTEX INITIALIZER
pthread _mutex_lock / trylock / unlock

pthread _mutex_destroy

25

Programmers need a clear model of how variables are
shared by threads

* Cannot reason about all possible interleavings of threads

Variables shared by multiple threads must be protected to
ensure mutually exclusive access

Semaphores are a fundamental mechanism for enforcing
mutual exclusion

26

Summary

This cat did not check for
exceptional cases

This cat did.

27

