
1

Process Scheduling &
Synchronization intro

CS 241

February 29, 2012

Copyright © University of Illinois CS 241 Staff

2

Announcements

Mid-semester feedback survey (linked off web page)

MP4 due Friday (not Tuesday)

Midterm
•  Next Tuesday, 7-9 p.m.
•  Study guide released this Wednesday
•  Next Monday’s lecture: review session

3

Today

Interactive scheduling
•  Round robin
•  Priority scheduling
•  How long is a quantum?

Synchronization intro

4

Process scheduling

Deciding which process/thread should occupy each resource
(CPU, disk, etc.) at each moment

Scheduling is everywhere...
•  disk reads
•  process/thread resource allocation
•  servicing clients in a web server
•  compute jobs in clusters / data centers
•  jobs using physical machines in factories

5

Scheduling algorithms

Batch systems
•  Usually non-preemptive: running process keeps CPU until it voluntarily

gives it up
  Process exits
  Switches to blocked state

•  First come first serve (FCFS)
•  Shortest job first (SJF) (also preemptive version)

Interactive systems
•  Running process is forced to give up CPU after time quantum expires

  Via interrupts or signals (we’ll see these later)
•  Round robin
•  Priority

These are some of the important ones to
know, not a comprehensive list!

6

Thus far: Batch scheduling

FCFS, SJF, SRPT useful when fast response not necessary
•  weather simulation
•  processing click logs to match advertisements with users
•  ...

What if we need to respond to events quickly?
•  human interacting with computer
•  packets arriving every few milliseconds
•  ...

7

Interactive Scheduling

 Usually preemptive
•  Time is sliced into quanta, i.e., time intervals
•  Scheduling decisions are made at the beginning of each quantum

 Performance metrics
•  Average response time
•  Fairness (or proportional resource allocation)

 Representative algorithms
•  Round-robin
•  Priority scheduling

8

Round-robin

One of the oldest, simplest, most commonly used scheduling
algorithms

Select process/thread from ready queue in a round-robin
fashion (i.e., take turns)

Problems
•  Might want some jobs to have greater share
•  Context switch overhead

1 2

Time

3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 ...

9

Round-robin: Example

Process Duration Order Arrival Time
P1 3 1 0
P2 4 2 0
P3 3 3 0

0

Suppose time quantum is 1 unit and P1, P2 & P3 never block

P1

10
P1 waiting time:
P2 waiting time:
P3 waiting time:

The average waiting time (AWT):

P1 P1 P2 P2 P2 P2 P3 P3 P3

10

Round-robin: Example

Process Duration Order Arrival Time
P1 3 1 0
P2 4 2 0
P3 3 3 0

0

P1

10
P1 waiting time: 4
P2 waiting time: 6
P3 waiting time: 6

The average waiting time (AWT):
 (4+6+6)/3 = 5.33

P1 P1 P2 P2 P2 P2 P3 P3 P3

Suppose time quantum is 1 unit and P1, P2 & P3 never block

11

Round-robin: Summary

Advantages
•  Jobs get fair share of CPU
•  Shortest jobs finish relatively quickly

Disadvantages
•  Larger than optimal average waiting time

  Example: 10 jobs each requiring 10 time slices
  RR: All complete after about 100 time slices
  FCFS performs about 2x better!

•  Performance depends on length of time quantum

12

Priority Scheduling

 Rationale: higher priority jobs are more mission-critical
•  Example: DVD movie player vs. send email

 Each job is assigned a priority

 Select highest priority runnable job
•  FCFS or Round Robin to break ties

 Problems
•  May not give the best AWT
•  Starvation of lower priority processes

13

Priority Scheduling: Example

Process Duration Priority Arrival Time
P1 6 4 0
P2 8 1 0
P3 7 3 0
P4 3 2 0

0 8

P4 (3) P1 (6)

11

P3 (7)

18

P1 waiting time:
P2 waiting time:
P3 waiting time:
P4 waiting time:

The average waiting time (AWT):

P2 (8)

24

(Lower priority number is preferable)

14

Priority Scheduling: Example

Process Duration Priority Arrival Time
P1 6 4 0
P2 8 1 0
P3 7 3 0
P4 3 2 0

0 8

P4 (3) P1 (6)

11

P3 (7)

18

The average waiting time (AWT):
 (0+8+11+18)/4 = 9.25
 (worse than SJF’s 7)

P2 (8)

24

(Lower priority number is preferable)

P1 waiting time: 18
P2 waiting time: 0
P3 waiting time: 11
P4 waiting time: 8

15

Setting priorities: nice

nice [OPTION] [COMMAND [ARG]...]
•  Run COMMAND with an adjusted niceness
•  With no COMMAND, print the current niceness.
•  Nicenesses range from -20 (most favorable scheduling) to 19 (least

favorable).

Options
•  -n, --adjustment=N

  add integer N to the niceness (default 10)
•  --help

  display this help and exit
•  --version

  output version information and exit

16

Setting priorities in C

#include <sys/time.h>

#include <sys/resource.h>

int getpriority(int which, int who);

int setpriority(int which, int who, int prio);

Access scheduling priority of process, process group, or user

Returns:
•  setpriority() returns 0 if there is no error, or -1 if there is
•  getpriority() can return the value -1, so it is necessary to clear errno prior to the call, then

check it afterwards to determine if a -1 is an error or a legitimate value

Parameters:
•  which

  PRIO_PROCESS, PRIO_PGRP, or PRIO_USER
•  who

A process identifier for PRIO_PROCESS, a process group identifier for PRIO_PGRP, or a
user ID for PRIO_USER

17

Choosing the time quantum

 How should we choose the time quantum?

 Time quantum too large
•  FIFO behavior
•  Poor response time

 Time quantum too small
•  Too many context switches (overhead)
•  Inefficient CPU utilization

18

Choosing the time quantum

Objective 1:
Fast response time
Best case: quantum = 0,
response time = C

Objective 2:
Efficiency
Best case: quantum = infinity,
Job completion time = J

General strategy: set quantum somewhere in the middle

Job execution Context switch overhead Job execution

C

19

Choosing the time quantum

Choice depends on
•  Priorities, architecture, etc.

Typical quantum: 10-100 ms
•  Large enough that overhead is small percentage
•  Small enough to give illusion of concurrency
•  e.g., linux.ews.illinois.edu: 99.98 ms quantum using round-robin

Questions
•  Does 100 ms matter? (how long is this in practical terms?)
•  Does this mean all processes wait 100 ms to run?

20

Experiment: the quantum in practice
typedef struct printer_arg_t {	
 int thread_index;	
} printer_arg_t;	
	
#define BUF_SIZE 100	
	
void * printer_thread(void *ptr)	
{	
 /* Create the message we will print out */	
 printer_arg_t* arg = (printer_arg_t*) ptr;	
 char message[BUF_SIZE];	
 int i;	
 for (i = 0; i < BUF_SIZE; i++)	
 message[i] = ' ';	
 sprintf(message + 10 * arg->thread_index, "thread %d\n",	
 arg->thread_index);	
	
 /* Print it forever */	
 while (1)	
 printf("%s", message);	
}	

21

Experiment: results on linux.ews
 thread 1
 thread 1
 thread 1
 thread 1
 thread 1
 thread 1
 thread 1
thread 0
thread 0
thread 0
thread 0
thread 0
thread 0
thread 0
thread 0
thread 0
thread 0
thread 0
thread 0
thread 0

thread 0
 thread 1
thread 0
thread 0
thread 0
thread 0
thread 0
thread 0
thread 0
...

22

Experiment: results on Mac OS X
thread 0
 thread 1
thread 0
 thread 1
thread 0
 thread 1
thread 0
 thread 1
thread 0
 thread 1
thread 0
 thread 1
thread 0
 thread 1
thread 0
 thread 1
thread 0
...

23

Experiment: results













    




















24

Experiment: results



















     


















25

Take-away point: unpredictability

Scheduling varies across operating systems

Scheduling is non-determinstic even for one OS
•  Default (non-real-time) scheduling does not guarantee any fixed length
•  Potentially huge variability in work accomplished in one quantum

  Factor of >10,000 difference in number of consecutive printfs in our
experiment!

Quantum may be fairly long (visible to human)

26

Scheduling: Issues to remember

Why doesn’t scheduling have one easy solution?

What are the pros and cons of each scheduling policy?

How does this matter when you’re writing multiprocess/
multithreaded code?

•  Can’t make assumptions about when your process will be running
relative to others!

•  May need specialized scheduling for specialized applications

27

Synchronization

CS 241

February 29, 2012

Copyright © University of Illinois CS 241 Staff

28

Playing together is not easy

Easy to share data among threads

But, not always so easy to do it correctly...

Easy case: one obvious “owner”
•  e.g., main() creates arguments, hands off to child thread
•  child now owns it, no one else will never read or write it

What if threads need to work together? e.g., in web server:
•  multiple threads concurrently access cache of files in memory,

occasionally adding or removing
•  multiple threads concurrently update count of total # clients

29

Do threads conflict in practice?

#include <stdio.h>	
#include <stdlib.h>	
#include <pthread.h>	
#include <assert.h>	
	
	
int cnt = 0;	
	
void * worker(void *ptr)	
{	
 int i;	
 for (i = 0; i < 50000; i++)	
 cnt++;	
}	

30

Do threads conflict in practice?

#define NUM_THREADS 2	
	
int main(void)	
{	
 pthread_t threads[NUM_THREADS];	
 int i, result;	
	
 for (i = 0; i < NUM_THREADS; i++) {	
 result = pthread_create(&threads[i], NULL, worker, NULL);	
 assert(result == 0);	
 }	
	
 for (i = 0; i < NUM_THREADS; i++) {	
 result = pthread_join(threads[i], NULL);	
 assert(result == 0);	
 }	
	
 /* Print result */	
 printf("Final value: %d\n", cnt);	
}	

31

Do threads conflict in practice?

If everything worked...

Q: What are the minimum and maximum final value?

Q: What value do you expect in practice?

Next time
•  How do we guarantee correct interaction between threads?

Synchronization!
•  Guess the final value (win a fabulous prize!)

$./20-counter 	
Final value: 100000	

