
1

Process Scheduling

CS 241

February 24, 2012

Copyright © University of Illinois CS 241 Staff

2

Announcements

Mid-semester feedback survey (linked off web page)

MP4 due Friday (not Tuesday)

Midterm
•  Next Tuesday, 7-9 p.m.
•  Study guide released this Wednesday
•  Next Monday’s lecture: review session

3

Process Scheduling

Deciding which process/thread should occupy each resource
(CPU, disk, etc.) at each moment

Scheduling is everywhere...
•  disk reads
•  process/thread resource allocation
•  servicing clients in a web server
•  compute jobs in clusters / data centers
•  jobs using physical machines in factories

4

In this lecture

Context: The scheduling problem

Objectives

Algorithms

Conclusion

5

Where scheduling fits

Scheduling decision!

new ready

running done

blocked

process created

normal or abnormal termination

quantum
expired

I/O
request

I/O complete

selected to
run enter

6

Where scheduling fits

Trigger to make scheduling decision:
whenever current process
exits the “running” state

new ready

running done

blocked

process created

normal or abnormal termination

quantum
expired

I/O
request

I/O complete

selected to
run enter

7

The basic scheduling decision

Given a set of ready processes
•  Which one should I run next?
•  How long should it run?
•  ...for each resource (CPU, disk, ...)

Same underlying concepts apply to scheduling processes or
threads

•  or picking packets to send in routers
•  or scheduling jobs in physical factories

enter exit
processor

dispatch

ready processes

?

8

Example

Schedule

1

2

3

Processes

3 1 3 2 3 1 3 2 3 2 3 2 3 2 3 3 3 3

Time

Is this a good schedule?

9

Scheduling is not clear-cut

Could I have done better? Depends!
•  Was some job very high priority?
•  Did I know when processes were arriving?
•  What’s the context switch time?
•  What’s my objective -- fairness, finish jobs quickly, meet deadlines for

certain jobs, ...?
•  ...

General-purpose OSes try to perform pretty well for the
common case

•  Is this good enough to fly an airplane?
•  Special purpose (e.g., “hard real-time”) scheduling exists
•  Linux: “Like all general-purpose operating systems, Linux is designed to

maximize average case performance instead of worst case
performance. ... if you truly are developing a hard real-time application,
consider using hard real-time extensions to Linux ... or use a different
operating system”

10

High-level objectives

Objective

Fairness Equitable shares of resource

Priority Allocate to most important first

Efficiency Make best use of equipment

Encourage good behavior Can’t take advantage of the system

Support heavy loads Degrade gracefully

Adapting to different
environments

Interactive, real-time, multi-media

11

Quantitative objectives

Objective
Fairness Processes get close to equal shares of the

CPU

Efficiency Keep resources as busy as possible

Throughput Number of processes that complete per unit
time

Waiting Time Time a process spends waiting in kernel’s
ready queue

Turnaround Time Time from process start to its completion

Response Time Amount of time from when a request was
first submitted until first response is produced

12

Types of workloads

I/O-bound
•  Does too much I/O to keep CPU busy
•  e.g., interactive shell, file transfer

CPU-bound
•  Does too much computation to keep I/O busy
•  e.g., sorting a million-entry array in RAM, testing primality

We should take advantage of these differences!
•  Scheduler should load balance between I/O-bound and CPU-bound

processes
•  Ideal: run all equipment (CPU, devices) at 100% utilization

13

Scheduling Algorithms

Batch systems
•  Usually non-preemptive: running process keeps CPU until it voluntarily

gives it up
  Process exits
  Switches to blocked state

•  First come first serve (FCFS)
•  Shortest job first (SJF) (also preemptive version)

Interactive systems
•  Running process is forced to give up CPU after time quantum expires

  Via interrupts or signals (we’ll see these later)
•  Round robin
•  Priority

These are some of the important ones to
know, not a comprehensive list!

14

Which transitions are preemptive?

Trigger to make scheduling decision:
whenever current process
exits the “running” state

new ready

running done

blocked

process created

normal or abnormal termination

quantum
expired

I/O
request

I/O complete

selected to
run enter

15

First Come First Serve (FCFS)

 Process that requests the CPU first is allocated the CPU first
•  Also called FIFO

 Non-preemptive
•  Used in batch systems

 Implementation
•  FIFO queues
•  A new process enters the tail of the queue
•  The scheduler selects next process to run from the head of the queue

enter exit
processor

dispatch
queue

16

FCFS Example

Process Duration Order Arrival Time

P1 24 1 0

P2 3 2 3

P3 4 3 7

0

P1 (24)

24 27

P2 (3) P3 (4)

P1 waiting time:
P2 waiting time:
P3 waiting time:

The average waiting time:

31

18

FCFS Example

Process Duration Order Arrival Time
P2 24 2 3
P1 3 1 0
P3 4 3 7

0

P1 (24)

3 27

P2 (3) P3 (4)

P1 waiting time:
P2 waiting time:
P3 waiting time:

The average waiting time:

31

What if the arrival times of P1 and P2 are swapped?

20

Problems with FCFS

Non-preemptive

Not optimal AWT

Cannot utilize resources in parallel
•  Assume 1 process CPU bound and many I/O bound processes

Result
•  Waiting time depends on arrival order
•  Potentially long wait for jobs that arrive later
•  Convoy effect, low CPU and I/O device utilization

21

3

3

Convoy effect – Low I/O

CPU

Disk

Time

1 2 3

Jobs 1,2: a msec of CPU, a disk read, repeat
Job 3: a sec of CPU, a disk read, repeat

1 2

1 2

3 1

1 2 3

1 2 1 2

idle! idle!

22

3

3

Convoy effect – Low CPU

Disk

CPU

Time

1 2 3

Jobs 1,2: a msec of disk, a little CPU, repeat
Job 3: a sec of disk, a little CPU, repeat

1 2

1 2

3 1

1 2 3

1 2 1 2

idle! idle!

23

Shortest Job First (SJF)

Job with shortest CPU time goes first
•  Often used in batch systems

Two types
•  Non-preemptive
•  Preemptive

24

Non-preemptive SJF: Example

Process Duration Order Arrival Time
P1 6 1 0
P2 8 2 0
P3 7 3 0
P4 3 4 0

0 3

P4 (3) P1 (6)

9

P3 (7)

16

P1 waiting time:
P2 waiting time:
P3 waiting time:
P4 waiting time:

Total waiting time =
Average waiting time =

P2 (8)

24

26

Compare to FCFS

Process Duration Order Arrival Time
P1 6 1 0
P2 8 2 0
P3 7 3 0
P4 3 4 0

0 6 14 21 24

P4 (3) P1 (6) P3 (7) P2 (8)

0 3

P4 (3) P1 (6)

9

P3 (7)

16

P2 (8)

24
P1 waiting time:
P2 waiting time:
P3 waiting time:
P4 waiting time:

Total waiting time =
Average waiting time =

28

Non-preemptive SJF

Advantages
•  Low average waiting time
•  Helps keep I/O devices busy

Disadvantages
•  Not practical: Cannot predict future CPU burst time

  OS solution: Use past behavior to predict future behavior
•  Starvation: Long jobs may never be scheduled

29

Shortest Remaining Proc. Time
(Preemptive SJF)
Algorithm

•  Job with least remaining time to completion runs
•  So, a new job that is shorter than remainder of running job preempts it

Advantages
•  Similar to non-preemptive SJF
•  Provably minimal average wait time

  Moving shorter job before longer job improves waiting time of short
job more than it harms waiting time of long job

Starvation again
•  A long job keeps getting preempted by shorter ones
•  Example

  Process A with CPU time of 1 hour arrives at time 0
  Every 1 minute, a short process with CPU time of 1 minute arrives
  What happens to A?

30

Thus far: Batch scheduling

FCFS, SJF, SRPT useful when fast response not necessary
•  weather simulation
•  processing click logs to match advertisements with users
•  ...

What if we need to respond to events quickly?
•  human interacting with computer
•  packets arriving every few milliseconds
•  ...

31

Interactive Scheduling

 Usually preemptive
•  Time is sliced into quanta, i.e., time intervals
•  Scheduling decisions are made at the beginning of each quantum

 Performance metrics
•  Average response time
•  Fairness (or proportional resource allocation)

 Representative algorithms
•  Round-robin
•  Priority scheduling

32

Round-robin

One of the oldest, simplest, most commonly used scheduling
algorithms

Select process/thread from ready queue in a round-robin
fashion (i.e., take turns)

Problems
•  Might want some jobs to have greater share
•  Context switch overhead

1 2

Time

3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 ...

33

Round-robin: Example

Process Duration Order Arrival Time
P1 3 1 0
P2 4 2 0
P3 3 3 0

0

Suppose time quantum is 1 unit and P1, P2 & P3 never block

P1

10
P1 waiting time:
P2 waiting time:
P3 waiting time:

The average waiting time (AWT):

P1 P1 P2 P2 P2 P2 P3 P3 P3

34

Round-robin: Example

Process Duration Order Arrival Time
P1 3 1 0
P2 4 2 0
P3 3 3 0

0

P1

10
P1 waiting time: 4
P2 waiting time: 6
P3 waiting time: 6

The average waiting time (AWT):
 (4+6+6)/3 = 5.33

P1 P1 P2 P2 P2 P2 P3 P3 P3

Suppose time quantum is 1 unit and P1, P2 & P3 never block

35

Round-robin: Summary

Advantages
•  Jobs get fair share of CPU
•  Shortest jobs finish relatively quickly

Disadvantages
•  Poor average waiting time with similar job lengths

  Example: 10 jobs each requiring 10 time slices
  RR: All complete after about 100 time slices
  FCFS performs better!

•  Performance depends on length of time quantum

36

Choosing the time quantum

 How should we choose the time quantum?

 Time quantum too large
•  FIFO behavior
•  Poor response time

 Time quantum too small
•  Too many context switches (overhead)
•  Inefficient CPU utilization

37

Choosing the time quantum

Objective 1:
Fast response time
Best case: quantum = 0,
response time = C

Objective 2:
Efficiency
Best case: quantum = infinity,
Job completion time = J

General strategy: set quantum somewhere in the middle

Job execution Context switch overhead Job execution

C

38

Choosing the time quantum

Choice depends on
•  Priorities, architecture, etc.

Typical quantum: 10-100 ms
•  Large enough that overhead is small percentage
•  Small enough to give illusion of concurrency
•  e.g., linux.ews.illinois.edu: 99.98 ms quantum using round-robin

Questions
•  Does 100 ms matter? (how long is this in practical terms?)
•  Does this mean all processes wait 100 ms to run?

39

Priority Scheduling

 Rationale: higher priority jobs are more mission-critical
•  Example: DVD movie player vs. send email

 Each job is assigned a priority

 Select highest priority runnable job
•  FCFS or Round Robin to break ties

 Problems
•  May not give the best AWT
•  Starvation of lower priority processes

40

Priority Scheduling: Example

Process Duration Priority Arrival Time
P1 6 4 0
P2 8 1 0
P3 7 3 0
P4 3 2 0

0 8

P4 (3) P1 (6)

11

P3 (7)

18

P1 waiting time:
P2 waiting time:
P3 waiting time:
P4 waiting time:

The average waiting time (AWT):

P2 (8)

24

(Lower priority number is preferable)

42

Setting priorities: nice

nice [OPTION] [COMMAND [ARG]...]
•  Run COMMAND with an adjusted niceness
•  With no COMMAND, print the current niceness.
•  Nicenesses range from -20 (most favorable scheduling) to 19 (least

favorable).

Options
•  -n, --adjustment=N

  add integer N to the niceness (default 10)
•  --help

  display this help and exit
•  --version

  output version information and exit

43

Setting priorities in C

#include <sys/time.h>

#include <sys/resource.h>

int getpriority(int which, int who);

int setpriority(int which, int who, int prio);

Access scheduling priority of process, process group, or user

Returns:
•  setpriority() returns 0 if there is no error, or -1 if there is
•  getpriority() can return the value -1, so it is necessary to clear errno prior to the call, then

check it afterwards to determine if a -1 is an error or a legitimate value

Parameters:
•  which

  PRIO_PROCESS, PRIO_PGRP, or PRIO_USER
•  who

A process identifier for PRIO_PROCESS, a process group identifier for PRIO_PGRP, or a
user ID for PRIO_USER

44

Issues to remember

Why doesn’t scheduling have one easy solution?

What are the pros and cons of each scheduling policy?

How does this matter when you’re writing multiprocess/
multithreaded code?

•  Can’t make assumptions about when your process will be running
relative to others!

•  May need specialized scheduling for specialized applications

45

Remember

Mid-semester feedback survey (linked off web page)

