Threads:
putting the pieces together

CS 24|
February 24, 2012

Copyright © University of lllinois CS 241 Staff

Goals for today

Pre-lecture quiz
When should you use threads!?

Building a parallel application: primality testing

Pre-lecture quiz

No. get_favorites() returns a pointer to memory which is destroyed
before main() gets a chance to use it.

No. main() might try to print out the numbers before the
get_favorites thread finishes.

No. 42 and 3.14159... are not, in fact, two of your favorite numbers.

No. In main(), the parameter passed to pthread join() should just be
my_fav instead of &my_fav, because my_fav is already a pointer.

No. main() should not call free(my_fav), because main() did not
allocate the memory. Remove the free() and it will work.

Yes.

2. What's the possible output?

3. User-level vs. kernel-level threads

User vs. Kernel Threads

Process Thread Process Thread

A \/
SIERa @@

-

Kernel
space{ / Kernel E\ Kernel — E

/
/ N / l
Run-time Thread Process Process Thread
system table table table table

User-level Threads Kernel-level Threads

Kernel thread packages
* Each thread can make blocking 1/O calls
* Can run concurrently on multiple processors

Threads in user-level
* Fast context switch
* Customized scheduling
* No need for kernel support

Q: Is kernel thread context-switching faster than process

context-switching! Why or why not?

* Both need to switch to kernel mode, swap registers, change program
counter, ...

* Kernel threads don’t need to change virtual memory spaces

When to use threads

Why threads?

Processes do not share resources well
« Why?

Process context switching cost is high
* Why!

Therefore ... Threads: light-weight processes

Shared address space

/N

Easier Faster creation,
communication, switching,
less protection communication,

termination

Tasks suitable for threading

Has multiple parallel sub-tasks

Some sub-tasks block for potentially long waits
Reading off disk

Waiting for user input
Waiting for other “asynchronous” events (could arrive at any time)

Can you implement these without threads!?

= Yes, but threads help modularize

Or, some sub-tasks use many CPU cycles

* |deas?! How about...

Putting it all together:
primality testing

Primality testing goals

Decide if an integer is prime
* Input: integer
* Output: prime, or composite with factors

Exploit parallelism
* Testing primality can be slow

* My laptop has multiple cores

T S T o e T e kS

the primes (x axis) in binary (y axis)

Attacking the problem

Serial algorithm

* lIterate through possible factors f, testing if f divides x

Easy to parallelize
* Lots of very small chunks of independent work

* Technical term: embarrassingly parallel

input: is 901 prime!?

main

thread |

01-C>23Y°

Result: ?

thread 2

OC-112°3Y>

thread 3

| €-1C 234>

W

ern:

- N

‘Same design pattern:
- Simulate the‘universe

o

. ; '.*._'_ '_31'12_5 Mpc/h

e

> “

[Millennium Si_:rvn‘L'iIétion /Virgo Consortium] -

Same design pattern:
Download movies

BitTorrent: (multiple)

File Yiew Help
|
[]u M;Jmupload rate: 20 KB/s (DSLjcable 256k up) ' nnl
freeculture. 2ip <
O MURNRNERN NN e bl i s drmBisa RS LA RNRRNRINY (B [52
Upload rate: 0 KBJs Download rate; 0 KBJs
blue-a-shart-film
< MENRRNRNRNRNNP5 3% done, 45:27 minutes remaining | [®] [5e
Upload rate: 3 KBJs Download rate: 46 KBjs
ubuntu-5, 10-install-i386.is0
(1] 3.7% | @®| [
xlivecd-20041201.is0
[? @) %) =
—
® RIGE

Same design pattern:
Render movies

Lucasfilm data center

Decision: processes or threads?

Processes

* Exploit parallelism successfully
* Separate memory space: good for protection

Threads

* Exploit parallelism successfully

* Shared memory space: good for working together

Planning the thread operations

main

thread | thread 2 thread 3

create,
pass arguments

wait for completion
(join)

01-C 22342
OC- 11 21P=Y2
| €-1C P23y

return results

Result: ?

20

Away we go...

Parallel performance

30 g S o

; 5 MacBook Air (2 cores) =—+— |
25 P\\ o | linux.ews (8 cores) —€— -
20

Time (sec)
1

|10
5
0 | | | | | | |
I 2 3 4 5 6 7/ 8

Number of threads

22

Parallel performance

Speedup

Number of threads

23

Next time: Scheduling

For real this time...

24

