
1

Threads:
putting the pieces together

CS 241

February 24, 2012

Copyright © University of Illinois CS 241 Staff

2

Goals for today

• Pre-lecture quiz

• When should you use threads?

• Building a parallel application: primality testing

3

Pre-lecture quiz

4

1. get_favorites: does it work?

• No. get_favorites() returns a pointer to memory which is destroyed
before main() gets a chance to use it.

• No. main() might try to print out the numbers before the
get_favorites thread finishes.

• No. 42 and 3.14159... are not, in fact, two of your favorite numbers.

• No. In main(), the parameter passed to pthread_join() should just be
my_fav instead of &my_fav, because my_fav is already a pointer.

• No. main() should not call free(my_fav), because main() did not
allocate the memory. Remove the free() and it will work.

• Yes.

5

2. What’s the possible output?

6

3. User-level vs. kernel-level threads

7

User vs. Kernel Threads

User-level Threads Kernel-level Threads

8

Trade-offs?

• Kernel thread packages
•  Each thread can make blocking I/O calls
•  Can run concurrently on multiple processors

• Threads in user-level
•  Fast context switch
•  Customized scheduling
•  No need for kernel support

• Q: Is kernel thread context-switching faster than process
context-switching? Why or why not?

•  Both need to switch to kernel mode, swap registers, change program
counter, ...

•  Kernel threads don’t need to change virtual memory spaces

9

When to use threads

10

Why threads?

• Processes do not share resources well
•  Why?

• Process context switching cost is high
•  Why?

• Therefore ... Threads: light-weight processes

Shared address space	

Easier	

communication,	

less protection	

Faster creation,	

switching,	

communication,	

termination	

11

Tasks suitable for threading

• Has multiple parallel sub-tasks

• Some sub-tasks block for potentially long waits
•  Reading off disk
•  Waiting for user input
•  Waiting for other “asynchronous” events (could arrive at any time)
•  Can you implement these without threads?

  Yes, but threads help modularize

• Or, some sub-tasks use many CPU cycles
•  Ideas? How about...

12

Putting it all together:
primality testing

13

Primality testing goals

• Decide if an integer is prime
•  Input: integer
•  Output: prime, or composite with factors

• Exploit parallelism
•  Testing primality can be slow
•  My laptop has multiple cores

the primes (x axis) in binary (y axis) [MathWorld]

14

Attacking the problem

• Serial algorithm
•  Iterate through possible factors f, testing if f divides x

• Easy to parallelize
•  Lots of very small chunks of independent work
•  Technical term: embarrassingly parallel

15

main

input: is 901 prime?

check 2-10

check 11-20

check 21-31
thread 1 thread 2 thread 3

Result: ?

16

Same design pattern:
Simulate the universe

[Millennium Simulation / Virgo Consortium]

17

Same design pattern:
Download movies

18

Same design pattern:
Render movies

Lucasfilm data center

19

Decision: processes or threads?

• Processes
•  Exploit parallelism successfully
•  Separate memory space: good for protection

• Threads
•  Exploit parallelism successfully
•  Shared memory space: good for working together

20

Planning the thread operations
main

check 2-10

check 11-20

check 21-31
thread 1 thread 2 thread 3

Result:	
 ?	

wait for completion
(join)

create,
pass arguments

return results

21

Away we go...

22

Parallel performance















       













23

Parallel performance



















       














24

Next time: Scheduling

• For real this time...

