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Goals for today

Pre-lecture quiz
When should you use threads!?

Building a parallel application: primality testing



Pre-lecture quiz



No. get_favorites() returns a pointer to memory which is destroyed
before main() gets a chance to use it.

No. main() might try to print out the numbers before the
get_favorites thread finishes.

No. 42 and 3.14159... are not, in fact, two of your favorite numbers.

No. In main(), the parameter passed to pthread join() should just be
my_fav instead of &my_fav, because my_fav is already a pointer.

No. main() should not call free(my_fav), because main() did not
allocate the memory. Remove the free() and it will work.

Yes.



2. What's the possible output?



3. User-level vs. kernel-level threads



User vs. Kernel Threads
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Kernel thread packages
* Each thread can make blocking 1/O calls
* Can run concurrently on multiple processors

Threads in user-level
* Fast context switch
* Customized scheduling
* No need for kernel support

Q: Is kernel thread context-switching faster than process

context-switching! Why or why not?

* Both need to switch to kernel mode, swap registers, change program
counter, ...

* Kernel threads don’t need to change virtual memory spaces



When to use threads



Why threads?

Processes do not share resources well
« Why?

Process context switching cost is high
* Why!

Therefore ... Threads: light-weight processes

Shared address space

/N

Easier Faster creation,
communication, switching,
less protection communication,

termination



Tasks suitable for threading

Has multiple parallel sub-tasks

Some sub-tasks block for potentially long waits
Reading off disk

Waiting for user input
Waiting for other “asynchronous” events (could arrive at any time)

Can you implement these without threads!?

= Yes, but threads help modularize

Or, some sub-tasks use many CPU cycles

* |deas?! How about...



Putting it all together:
primality testing



Primality testing goals

Decide if an integer is prime
* Input: integer
* Output: prime, or composite with factors

Exploit parallelism
* Testing primality can be slow

* My laptop has multiple cores

T S T o e T e kS

the primes (x axis) in binary (y axis)



Attacking the problem

Serial algorithm

* lIterate through possible factors f, testing if f divides x

Easy to parallelize
* Lots of very small chunks of independent work

* Technical term: embarrassingly parallel



input: is 901 prime!?

main

thread |
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Result: ?

thread 2
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Same design pattern:
Download movies

BitTorrent: (multiple)
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Same design pattern:
Render movies

Lucasfilm data center




Decision: processes or threads?

Processes

* Exploit parallelism successfully
* Separate memory space: good for protection

Threads

* Exploit parallelism successfully

* Shared memory space: good for working together



Planning the thread operations

main

thread | thread 2 thread 3

create,
pass arguments

wait for completion
(join)
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return results

Result: ?
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Away we go...



Parallel performance
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Parallel performance

Speedup

Number of threads
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Next time: Scheduling

For real this time...
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