
1 

Threads: use & systems view 

CS 241 

February 22, 2012 

Copyright © University of Illinois CS 241 Staff 

 



2 

Today 

• MP4 released 
•  Multithreaded merge sort 

• Terminating threads 
•  Finishing up from last time 

• Whose memory is it, anyway? 
•  Passing arguments 
•  Thread safety 

• Systems view of threads 
•  User space vs. kernel 



3 

Terminating threads 



4 

Terminating Threads: pthread_exit() 

int pthread_exit(void * retval); 

• Terminate the calling thread  

• Makes the value retval available to any successful join with the 
terminating thread 

• Returns 
•  pthread_exit() cannot return to its caller 

• Parameters 
•  retval: Pointer to data returned to joining thread 

• Note 
•  If main() exits before its threads via pthread_exit(), the other 

threads continue. Otherwise, they will be terminated when main() ends.  



5 

#include <pthread.h>  
#define NUM_THREADS 5  
 
 
void *PrintHello(void *threadid) { 
  printf("\n%d: Hello World!\n", threadid);  
 pthread_exit(NULL);  

}  
 
 
 
 

Termination example 



6 

int main (int argc, char *argv[]) {  
 pthread_t threads[NUM_THREADS];  
 int rc, t;  
  
 for(t=0;t < NUM_THREADS;t++) {  
  printf("Creating thread %d\n", t);  
  rc = pthread_create(&threads[t], NULL, 

                           PrintHello, (void *)t);  
  if (rc) {  
     printf("ERROR; pthread_create() return code is %d\n”, 

                 rc);  
     exit(-1); 
  } 
 }  

}  
 
 
 
 
	
  

Termination example 

Will all threads get a 
chance to execute?	



 pthread_exit(NULL); 



7 

int main (int argc, char *argv[]) {  
 pthread_t threads[NUM_THREADS];  
 int rc, t;  
  
 for(t=0;t < NUM_THREADS;t++) {  
  printf("Creating thread %d\n", t);  
  rc = pthread_create(&threads[t], NULL, 

                           PrintHello, (void *)t);  
  if (rc) {  
     printf("ERROR; pthread_create() return code is %d\n”, 

                 rc);  
     exit(-1); 
  } 
 } 
 pthread_exit(NULL); 

}  
 
 
 
 
	
  

Termination example 

Will all threads get a 
chance to execute before 

the parent exits?	



for(t=0;t < NUM_THREADS;t++) {  
    pthread_join(thread[t], NULL); 
    printf(“Joined thread %d\n”,t);  
} 



8 

Thread Lifetime 

• A thread exists until... 
•  It returns from the function or calls pthread_exit() 
•  The whole process terminates 
•  The machine catches fire 



9 

So, your process terminates when… 

• Any thread calls exit(); 

• The main thread returns 
•  main() { 

 pthread_create();  
 return 0; 
 } 

• Segmentation fault 
•  *(char*)0 = 0; 

• There are no more threads left to run 



10 

Whose memory is it, 
anyway? 



11 

Example: argument passing 

#include <pthread.h> 
#include <stdio.h> 
#include <stdlib.h> 
#define NUM_THREADS  8 
 
void *PrintHello(void *threadid) 
{ 
 int *id_ptr, taskid; 
 sleep(1); 
 id_ptr = (int *) threadid; 
 taskid = *id_ptr; 
 printf("Hello from thread %d\n", taskid); 
 pthread_exit(NULL); 

} 



12 

int main(int argc, char *argv[]) { 
 pthread_t threads[NUM_THREADS]; 
 int rc, t; 

 
 for(t=0;t<NUM_THREADS;t++) { 
  printf("Creating thread %d\n", t); 
  rc = pthread_create(&threads[t], NULL, 

               PrintHello, (void *) &t); 
  if (rc) { 
      printf("ERR; pthread_create() ret = %d\n", rc); 
      exit(-1); 
  } 
 } 
 pthread_exit(NULL); 

} 
	
  

Example: argument passing 

Does this code work? 



13 

int main(int argc, char *argv[]) { 
 pthread_t threads[NUM_THREADS]; 
 int rc, t; 

 
 for(t=0;t<NUM_THREADS;t++) { 
  printf("Creating thread %d\n", t); 
  rc = pthread_create(&threads[t], NULL, 

               PrintHello, (void *) &t); 
  if (rc) { 
      printf("ERR; pthread_create() ret = %d\n", rc); 
      exit(-1); 
  } 
 } 
 pthread_exit(NULL); 

} 
	
  

Example: argument passing 
The loop that creates threads 
modifies the contents of the 

address passed as an argument, 
possibly before the created 

threads can access it.  

What is the possible output? 



14 

Candidate “contracts” for thread args 

• main owns the memory 
•  main creates memory (e.g., integer arguments from last example) 
•  Threads can use it briefly to get their argument 
•  main can later modify & is responsible for freeing 

• child thread owns the memory 
•  main malloc’s memory 
•  main transfers “ownership” of argument memory to thread at startup 
•  thread can read/write/free, main can’t touch it (until thread is done) 

• nobody owns the memory 
•  global variable; nothing to free() 
•  once created by main(), no one writes to the memory 



15 

Candidate “contracts” for thread args 

• main owns the memory 
•  main creates memory (e.g., integer arguments from last example) 
•  Threads can use it briefly to get their argument 
•  main can later modify & is responsible for freeing 

• child thread owns the memory 
•  main malloc’s memory 
•  main transfers “ownership” of argument memory to thread at startup 
•  thread can read/write/free, main can’t touch it (until thread is done) 

• nobody owns the memory 
•  global variable; nothing to free() 
•  once created by main(), no one writes to the memory 

X 

Conflict 



16 

 for(t=0;t<NUM_THREADS;t++) { 
  task_id = (int *) malloc(sizeof(int)); 
  *task_id = t; 
  printf("Creating thread %d\n", t); 
  rc = pthread_create(&threads[t], NULL, PrintHello, 

           (void *) task_id); 
  if (rc) { 
   printf("ERR; pthread_create() ret = %d\n", rc); 
      exit(-1); 
  } 
 } 
 pthread_exit(NULL); 

} 
	
  

Better argument passing 



17 

Better argument passing 

#include <pthread.h> 
#include <stdio.h> 
#include <stdlib.h> 
#define NUM_THREADS  8 
 
void *PrintHello(void *threadid) 
{ 
 int *id_ptr, taskid; 
 sleep(1); 
 id_ptr = (int *) threadid; 
 taskid = *id_ptr; 
 printf("Hello from thread %d\n", taskid); 

   free(threadid); 
 pthread_exit(NULL); 

} 

PrintHello thread owns 
the memory; so PrintHello is 
responsible for freeing memory 



18 

pthread_t threads[NUM_THREADS]; 
 
void make_thread(int arg) { 
    rc = pthread_create(&threads[arg], NULL, PrintHello, 
            (void *) &arg); 
    if (rc) { 
        printf("ERR; pthread_create() ret = %d\n", rc); 
        exit(-1); 
    } 
} 
 
int main() { 
 for(t=0;t<NUM_THREADS;t++) { 
  make_thread(t); 
 } 
 pthread_exit(NULL); 

} 

How about this? 



19 

pthread_t threads[NUM_THREADS]; 
 
void make_thread(int arg) { 
    rc = pthread_create(&threads[arg], NULL, PrintHello, 
            (void *) &arg); 
    if (rc) { 
        printf("ERR; pthread_create() ret = %d\n", rc); 
        exit(-1); 
    } 
} 
 
int main() { 
 for(t=0;t<NUM_THREADS;t++) { 
  make_thread(t); 
 } 
 pthread_exit(NULL); 

} 

How about this? 

Violates “thread owns” rule: 
arg is destroyed here, while thread 
is still running 



20 

Example: pthread error handling 

• Recall errno: global error code variable 
•  Problem: which of the many threads “owns” errno? 

• Compared to normal TCP system calls, pthreads functions... 
•  Similarity 

  Returns 0 on success 
•  Differences 

  Returns error code on failure 
  Does not set errno 

•  What about errno? 
  Each thread has its own 
  Define _REENTRANT (-D_REENTRANT switch to compiler) 

when using pthreads 



21 

Pitfalls 

• Global variables 
•  Problem: No protection between threads 
•  Solutions: 

  Disallow all global variables 
  Introduce new thread-specific global variables 

• Are my libraries thread-safe? 
•  May use local variables 
•  May not be designed to be interrupted 

  Create wrappers 



22 

Unsafe Library Calls 

#include <string.h>  

 

char *token;  

char *line = "LINE TO BE SEPARATED";  

char *search = " "; 

 

/* Token will point to "LINE". */  

token = strtok(line, search);  

 

/* Token will point to "TO". */  

token = strtok(NULL, search);  

#include <string.h>  

 

char *token;  

char *line = "LINE TO BE SEPARATED";  

char *search = " "; 

 

/* Token will point to "LINE". */  

token = strtok_r(line, search);  

 

/* Token will point to "TO". */  

token = strtok_r(NULL, search);  



23 

Thread-safe Library Calls 

#include <string.h>  

 

char *token;  

char *line = "LINE TO BE 
SEPARATED";  

char *search = " "; 

char *state; 

 

/* Token will point to "LINE". */  

token = strtok_r(line, search, 
&state);  

 

/* Token will point to "TO". */  

token = strtok_r(NULL, search, 
&state);  

#include <string.h>  

 

char *token;  

char *line = "LINE TO BE 
SEPARATED";  

char *search = " "; 

char *state; 

 

/* Token will point to "LINE". */  

token = strtok_r(line, search, 
&state);  

 

/* Token will point to "TO". */  

token = strtok_r(NULL, search, 
&state); 



24 

System & library functions that are 
not required to be thread-safe 

asctime dirname getenv getpwent lgamma readdir 
basename dlerror getgrent getpwnam lgammaf setenv 
catgets drand48 getgrgid getpwuid lgammal setgrent 
crypt ecvt getgrnam getservbyname localeconv setkey 
ctime encrypt gethostbyaddr getservbyport localtime setpwent 
dbm_clearerr endgrent gethostbyname getservent lrand48 setutxent 
dbm_close endpwent gethostent getutxent mrand48 strerror 
dbm_delete endutxent getlogin getutxid nftw strtok 
dbm_error fcvt getnetbyaddr getutxline nl_langinfo ttyname 
dbm_fetch ftw getnetbyname gmtime ptsname unsetenv 
dbm_firstkey gcvt getnetent hcreate putc_unlocked wcstombs 
dbm_nextkey getc_unlocked getopt hdestroy putchar_unlocked wctomb 
dbm_open getchar_unlocked getprotobynumber inet_ntoa pututxline 
dbm_store getdate getprotoent l64a rand 



25 

Key take-away points 

• Easiest way to coordinate between threads: 
•  Be clear which thread “owns” a piece of memory at any time 
•  Others must not write to it, or destroy it via free() or via returning 

from a function 
•  Not everything falls into this category 

• Make sure your library calls are thread-safe 

• All the above only works if one thread needs the memory 
•  ...so we can have an “owner” 
•  General-purpose coordination between threads: next week 



26 

The Operating System’s 
view of threads 



27 

Thread Packages 

• Kernel thread packages  
•  Implemented and supported at kernel level 

• User-level thread packages 
•  Implemented at user level 
•  Kernel perspective: everything is a single-threaded process 



28 

Threads in User Space (Old Linux)  

Collection of 
procedures that 
manages the 

threads 

Keep track of threads in 
process (analogous to 
kernel process table) 



29 

User-level Threads 

• Advantages 
•  Fast Context Switching: keeps the OS out of it! 

  User level thread libraries do not require system calls 
–  No call to OS and no interrupts to kernel	



  thread_yield  
–  Save the thread information in the thread table	



–  Call the thread scheduler to pick another thread to run	


  Saving local thread state scheduling are local procedures 

–  No trap to kernel, low context switch overhead, no memory 
switch	



•  Customized Scheduling (at user level) 

29 



30 

User-level Threads 

• Disadvantages 
•  What happens if one thread makes a blocking I/O call? 

  Change the system to be non-blocking 
  Always check to see if a system call will block 

•  What happens if one thread never yields? 
  Introduce clocked interrupts 

•  Multi-threaded programs frequently make system calls  
  Causes a trap into the kernel anyway! 



31 

User vs. Kernel Threads 

User-level Threads Kernel-level Threads 



32 

Kernel-level Threads 

• Advantages 
•  Kernel schedules threads in addition to processes 
•  Multiple threads of a process can run simultaneously  

  Now what happens if one thread blocks on I/O?  
  Kernel-level threads can make blocking I/O calls without blocking 

other threads of same process 
•  Good for multicore architectures 



33 

Kernel-level Threads 

• Disadvantages 
•  Overhead in the kernel… extra data structures, scheduling, etc.  
•  Thread creation is expensive 

  Have a pool of waiting threads 
•  What happens when a multi-threaded process calls fork()? 
•  Which thread should receive a signal? 



34 

Trade-offs? 

• Kernel thread packages  
•  Each thread can make blocking I/O calls 
•  Can run concurrently on multiple processors 

• Threads in User-level  
•  Fast context switch 
•  Customized scheduling 
•  No need for kernel support 



35 

Things to think about for the future 

• Who gets to go next when a thread blocks/yields? 
•  Scheduling! 

• What happens when multiple threads are sharing the same 
resource? 

•  Synchronization! 


