
1

POSIX threads

CS 241

February 17, 2012

Copyright © University of Illinois CS 241 Staff

2

Recall: Why threads over processes?

• Creating a new process can be expensive
•  Time

  A call into the operating system is needed
  Context-switching involves the operating system

•  Memory
  The entire process must be replicated

•  The cost of inter-process communication and synchronization of shared
data
  May involve calls into the operation system kernel

• Threads can be created without replicating an entire process
•  Creating a thread is done in user space rather than kernel

• Shared virtual address space

3

POSIX threads

• Early on
•  Each OS had it’s own thread library/API
•  Difficult to write multithreaded programs

  Learn a new API with each new OS
  Modify code with each port to a new OS

• So later...
•  POSIX (IEEE 1003.1c-1995) provided a standard known as pthreads

4

The pthreads API

• Thread management
•  Creating, detaching, joining, etc. Set/query thread attributes

• Mutexes
•  Synchronization

• Condition variables
•  Communications between threads that share a mutex

today

5

Creating a Thread

int pthread_create (pthread_t* tid,
 pthread_attr_t* attr,
 void* (start_routine),
 void* arg);

Unique thread identifier
returned from call Attributes structure

(NULL for defaults)

main routine for
child thread Argument passed

to child thread’s
start_routine

zero for success,
else error number

6

Creating a Thread

• pthread_create() takes a pointer to a function as one of
its arguments

•  start_routine is called with the argument specified by arg
•  start_routine can only have one parameter of type void *
•  Complex parameters can be passed by creating a structure and passing

the address of the structure
•  The structure shouldn’t be a local variable

7

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
void *snow(void *data) {
 printf("Let it snow ... %s\n", data);
 pthread_exit(NULL);

}
int main(int argc, char *argv[]) {
 pthread_t mythread;
 int result;
 char *data = "Let it snow.";
 result = pthread_create(&mythread, NULL, snow, data);
 printf("pthread_create() returned %d\n", result);
 if(result)
 exit (1);
pthread_exit(NULL);

}

	

Example: pthread_create()

8

Thread vs. Process Creation

• fork()
•  Two separate processes with independent destinies
•  Start from same position as parent (clone)
•  Independent memory space for each process

• pthread_create()
•  Two separate threads with independent destinies
•  Start from a function
•  Share memory

9

fork()

Global Variables

Code

Stack

Global Variables

Code

Stack

Process A
Process B

fork()

10

pthread_create()

Global Variables

Code

Stack Stack

Process A
Thread 1

Process A
Thread 2

11

Possible output?

int x = 1;
void* func(void* p){
 x = x + 1;
 printf("x is %d\n”, x);
 return NULL;

}

Shared code

main(...) {
 fork();
 func(NULL);
}

fork version

main(...) {
 pthread_t tid;
 pthread_create(&tid,NULL,

 func,NULL);
 func(NULL);

}

threads version

12

Possible output: threads version, #1

int x = 1;

void* func(void* p){

 x = x + 1;
 printf("x is %d\n”, x);
 return NULL;

}

void* func(void* p){
 x = x + 1;
 printf("x is %d\n”, x);
 return NULL;

}

tim
e

Output:
x is 2
x is 3

13

Possible output: threads version, #2

int x = 1;

void* func(void* p){

 x = x + 1;
 x

 printf("x is %d\n”, _);
 return NULL;

}

void* func(void* p){
 x = x + 1;
 printf("x is %d\n”, x);
 return NULL;

}

tim
e

Output:
x is 3
x is 2

14

Possible output: threads version, #3

int x = 1;

void* func(void* p){

 x = x + 1;

printf("x is %d\n”, x);

 return NULL;
}

void* func(void* p){

 x = x + 1;

 printf("x is %d\n”, x);
 return NULL;

}

tim
e

Output:
x is 3
x is 3

15

Possible output: threads version, #4

int x = 1;

void* func(void* p){

 x + 1

 x = _____;
printf("x is %d\n”, x);

 return NULL;
}

void* func(void* p){
 x + 1

 x = _____;
 printf("x is %d\n”, x);
 return NULL;

}

tim
e

Output:
x is 2
x is 2

16

Summary: Creating Threads

• Initially, main() has a single thread
•  All other threads must be explicitly created

• pthread_create()  new executable thread
•  Can be called any number of times from anywhere

• Maximum number of threads is implementation dependent

• Question:
•  After a thread has been created, how do you know when it will be

scheduled to run by the operating system?
•  Answer: It is up to the operating system
•  Correct coding should not require knowledge of scheduling

  Later: How to accomplish that

17

pthreads Attributes

• Attributes
•  Data structure pthread_attr_t
•  Set of choices for a thread
•  Passed in thread creation routine

• Choices
•  Scheduling options (more later on scheduling)
•  Detached state

  Detached
–  Main thread does not wait for the child threads to terminate	

  Joinable
–  Main thread waits for the child thread to terminate	

–  Useful if child thread returns a value	

18

pthreads Attributes

• Initialize an attributes structure to the default values
•  int pthread_attr_init (pthread_attr_t* attr);

• Set the detached state value in an attributes structure
•  int pthread_attr_setdetachstate (pthread_attr_t*
attr, int value);

•  value is one of
  PTHREAD_CREATE_DETACHED (“zombie antidote”)
  PTHREAD_CREATE_JOINABLE

• Can change your mind later
•  joinable to detached via pthread_detach()
•  but, nothing to go from detached to joinable

19

Detached Threads

Master
Thread

Worker
Thread

Worker
Thread

pthread_create()

pthread_exit()

Worker
Thread

…
pthread_exit()

pthread_exit()

20

Joined Threads

Master
Thread

Worker
Thread

Worker
Thread

pthread_create() pthread_join()

pthread_exit()

Worker
Thread

…

21

Waiting for Threads: pthread_join()

int pthread_join(pthread_t thread,

 void** retval);

• Suspends calling thread until target thread terminates

• Returns
•  0 on success
•  Error code on failure

• Parameters
•  thread: Target thread identifier
•  retval: Value passed to pthread_exit() by the terminating

thread is made available in the location referenced by retval

22

Waiting for Threads: pthread_join()

int pthread_join(pthread_t thread,

 void** retval);

• Note
•  You cannot call pthread_join() on a detached thread
•  Detaching means you are not interested in knowing about the thread’s

exit and return value

• Set pthread_attr to joinable before creating thread
•  pthread_attr_init(&attr);
•  pthread_attr_setdetachstate(&attr,
PTHREAD_CREATE_JOINABLE);

23

void *thread(void *vargp) {
 pthread_exit((void *)42);

}

int main() {

 int i;
 pthread_t tid;

 pthread_create(&tid, NULL, thread, NULL);
 pthread_join(tid, (void **)&i);
 printf("%d\n",i);

}

	

Returning data via pthread_join()

What is missing?

24

void *thread(void *vargp) {
 pthread_exit((void *)42);

}

int main() {

 int i;
 pthread_t tid;

 /* Initialize and set thread detached attribute */
 pthread_attr_t attr;
 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr,
 PTHREAD_CREATE_JOINABLE);

 pthread_create(&tid, &attr, thread, NULL);
 pthread_join(tid, (void **)&i);
 printf("%d\n", i);

}

Returning data via pthread_join()

25

Terminating Threads: pthread_exit()

int pthread_exit(void * retval);

• Terminate the calling thread

• Makes the value retval available to any successful join with the
terminating thread

• Returns
•  pthread_exit() cannot return to its caller

• Parameters
•  retval: Pointer to data returned to joining thread

• Note
•  If main() exits before its threads via pthread_exit(), the other

threads continue. Otherwise, they will be terminated when main() ends.

26

#include <pthread.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid) {
 printf("\n%d: Hello World!\n", threadid);
 pthread_exit(NULL);

}

Termination example

27

int main (int argc, char *argv[]) {
 pthread_t threads[NUM_THREADS];
 int rc, t;

 for(t=0;t < NUM_THREADS;t++) {
 printf("Creating thread %d\n", t);
 rc = pthread_create(&threads[t], NULL, f, (void *)t);
 if (rc) {
 printf("ERROR; pthread_create() return code is %d\n”,

 rc);
 exit(-1);
 }
 }

}

	

Termination example

Will all threads get a
chance to execute?	

 pthread_exit(NULL);

28

int main (int argc, char *argv[]) {
 pthread_t threads[NUM_THREADS];
 int rc, t;

 for(t=0;t < NUM_THREADS;t++) {
 printf("Creating thread %d\n", t);
 rc = pthread_create(&threads[t], NULL, f, (void *)t);
 if (rc) {
 printf("ERROR; pthread_create() return code is %d\n”,

 rc);
 exit(-1);
 }

 pthread_exit(NULL);
 }

}

	

Termination example

Will all threads get a
chance to execute before

the parent exits?	

for(t=0;t < NUM_THREADS;t++) {
 pthread_join(thread[t], NULL);
 printf(“Joined thread %d\n”,t);
}

29

pthread Error Handling

• pthreads functions do not follow the usual Unix conventions
•  Similarity

  Returns 0 on success
•  Differences

  Returns error code on failure
  Does not set errno

•  What about errno?
  Each thread has its own
  Define _REENTRANT (-D_REENTRANT switch to compiler) when

using pthreads

30

Thread Lifetime

• A thread exists until...
•  It returns from the function or calls pthread_exit()
•  The whole process terminates
•  The machine catches fire

31

So, your process terminates when…

• Any thread calls exit();

• The main thread returns
•  main() {

 pthread_create();
 return 0;
 }

• Segmentation fault
•  *(char*)0 = 0;

• There are no more threads left to run

32

Main points

• A thread is the lightest unit of work that can be scheduled to
run on the processor

• To create a thread you
•  Indicate which function the thread should execute
•  Indicate the detach state of the thread

• When a new thread is created
•  It runs concurrently with the creating thread
•  It shares common data space

33

Reference slides

34

Threads vs. Processes

Property Processes created with fork Threads of a process Ordinary function calls

variables Get copies of all variables Share global variables Share global variables

IDs Get new process IDs
Share the same process
ID but have unique
thread ID

Share the same
process ID (and thread
ID)

Data/control
Must communicate explicitly,
e.g., use pipes or small integer
return value

May communicate with
return value or carefully
shared variables

May communicate with
return value
or shared variables

Parallelism
(one CPU) Concurrent Concurrent Sequential

Parallelism
(multiple CPUs)

May be executed
simultaneously

Kernel threads may be
executed simultaneously Sequential

35

Getting the current thread ID

• You can retrieve the current thread ID
•  pthread_t pthread_self(void);
•  Returns currently executing thread’s ID

