Processes: A System View

CS 241

February 17, 2012

Copyright © University of Illinois CS 241 Staff

What the OS does: 2 State Model

Processes

What the OS does: 2 State Model

Processes

2 State Model

Processes

What the OS stores: PCB

OS stores Process Control Block (PCB) for each process

- In-memory OS structure
- User processes cannot access it

Contents:

- Identifiers
 - pid & ppid (process ID & parent process ID)
- Processor state information
 - User-visible registers, control and status, stack
- Scheduling information
 - Process state, priority, what event the process is waiting for, ...

What the OS stores: PCB

Contents (cont'd):

- Inter-process communication
 - Signals
- Privileges
 - CPU instructions, memory
- Memory Management
 - e.g., Page tables
- Resource ownership and utilization

Five State Process Model

"All models are wrong. Some Models are Useful"

• George Box, statistician

2 state model

- Too simplistic
- What does "Not Running" mean?

7 state model

- Considers suspending process to disk
- See Stallings book, section 3.2

Next: 5 state model

5 State Model: States

5 State Model: States

5 State Model: States

5 State Model: Summary

Running

- Currently executing
- On a single processor machine, at most one process in the "running" state

Ready

Prepared to execute

Blocked

Waiting on some event

New

Created, but not loaded into memory

Done

Released from pool of executing processes

Null (nothing) to New

• New process creation

New to Ready

Move to pool of executable processes

Ready to Running

• Chosen to run from the pool of processes (How?)

running

done

ready

blocked

What events cause these transitions?

Running to Ready

Preempted by OS

Running to Blocked

 Request for an unavailable resource

Running to Done

• Terminated / completed

Blocked to Ready

• Resource is now available

Ready to Done

Terminated by another process

Process Queue Model

Process Queue Model

Process Queue Model

Take-away questions

What would happen if user processes were allowed to disable interrupts?

In a single CPU system what is the maximum number of processes that can be in the running state?

From Processes to Threads

CS 241

February 17, 2012

Copyright © University of Illinois CS 241 Staff

Processes vs. threads

Process

• Fork is expensive (time & memory)

Thread

- A lightweight process: little memory, fast startup
- Shared memory among threads in a process

Processes vs. threads

Three processes each with one thread

One process with three threads

Processes vs. threads

Each process can include many threads

All threads of a process share:

- Process ID
- Memory (program code and global data)
- Open file/socket descriptors
- Working environment (current directory, user ID, etc.)
- Semaphores (covered later in the course)
- Signal handlers and signal dispositions (covered later in the course)

Thread usage: word processor

Working file can only be accessed by one process at a time

Thread usage: word processor

Working file can only be accessed by one process at a time

Thread usage: web server

Thread of execution

Sequential set of instructions

- Each has its own function calls & automatic (local) variables
- Need program counter and stack for each thread

Normal 1-thread function call

Compare: Threaded function call

Thread Execution States

Events associated with a change in thread state:

- Spawn (another thread)
- Block
 - Should blocking a thread block other, or all, threads?
- Unblock
- Finish (thread)
 - De-allocate register context and stacks

Thread-Specific Resources

Each thread has its own

- Thread ID (integer)
- Stack, Registers, Program Counter

Threads in one process can communicate via shared memory

Must be done carefully!

Processes vs. Threads

Per Process Items	Per Thread Items
Address space Global variables Open files Child processes Pending alarms Signals and signal handlers Accounting information	Program counter Registers Stack State

Each thread executes separately

Threads in the same process share many resources

No protection among threads!! (What?)

Process vs. thread creation

Platform	fork()			pthread_create()		
	real	user	sys	real	user	sys
AMD 2.3 GHz Opteron (16 cpus)	12.5	1.0	12.5	1.2	0.2	1.3
AMD 2.4 GHz Opteron (8 cpus)	17.6	2.2	15.7	1.4	0.3	1.3
IBM 4.0 GHz POWER6 (8 cpus)	9.5	0.6	8.8	1.6	0.1	0.4
IBM 1.9 GHz POWER5 p5-575 (8 cpus)	64.2	30.7	27.6	1.7	0.6	1.1
IBM 1.5 GHz POWER4 (8 cpus)	104.5	48.6	47.2	21	1.0	1.5
INTEL 2.4 GHz Xeon (2 cpus)	54.9	1.5	20.8	1.6	0.7	0.9
INTEL 1.4 GHz Itanium2 (4 cpus)	54.5	1.1	22.2	2.0	1.2	0.6

http://www.llnl.gov/computing/tutorials/pthreads.

Timings reflect 50,000 process/thread

Creations were performed with the time utility, and units are in seconds, no optimization flags.

Key points

Threads are lightweight

• Is this good or bad?

Threads share memory and other resources

- (Still have own stack, registers, PC, state)
- Is this good or bad?

Next time

Monday: Using threads

Tuesday: MP3 Shell due