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2 State Model 
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What the OS stores: PCB 

• OS stores Process Control Block (PCB) for each process 
•  In-memory OS structure  
•  User processes cannot access it 

• Contents: 
•  Identifiers  

  pid & ppid (process ID & parent process ID) 
•  Processor state information  

  User-visible registers, control and status, stack 
•  Scheduling information  

  Process state, priority, what event the process is waiting for, ... 
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What the OS stores: PCB 

• Contents (cont’d): 
•  Inter-process communication  

  Signals 
•  Privileges  

  CPU instructions, memory 
•  Memory Management  

  e.g., Page tables 
•  Resource ownership and utilization 
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Five State Process Model 

“All models are wrong. Some Models are Useful” 
•  George Box, statistician 

• 2 state model 
•  Too simplistic 
•  What does “Not Running” mean? 

• 7 state model  
•  Considers suspending process to disk 
•  See Stallings book, section 3.2 

• Next: 5 state model 



8 

5 State Model: States 
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5 State Model: States 
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5 State Model: Summary 

• Running 
•  Currently executing 
•  On a single processor machine, at most one process in the “running” state 

• Ready 
•  Prepared to execute 

• Blocked 
•  Waiting on some event 

• New 
•  Created, but not loaded into memory 

• Done 
•  Released from pool of executing processes 
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5 State Model: Transitions 

• Null (nothing) to New 
•  New process creation 
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5 State Model: Transitions 

• New to Ready 
•  Move to pool of  

executable 
processes 

new ready 

running done 

blocked 



14 

5 State Model: Transitions 

• Ready to Running 
•  Chosen to run from  

the pool of  
processes (How?) 
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5 State Model: Transitions 

• What events cause these transitions? 
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5 State Model: Transitions 

• Running to Ready 
•  Preempted by OS 

• Running to Blocked  
•  Request for an  

unavailable resource 

• Running to Done 
•  Terminated / completed 
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5 State Model: Transitions 

• Blocked to Ready 
•  Resource is now available 
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5 State Model: Transitions 

• Ready to Done 
•  Terminated by another process 

• Blocked to Done 
•  Terminated by another process 
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5 State Model: Transitions 
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Process Queue Model 
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Process Queue Model 
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Process Queue Model 
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Take-away questions 

• What would happen if user processes were allowed to disable 
interrupts? 

• In a single CPU system what is the maximum number of 
processes that can be in the running state? 
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Processes vs. threads 

• Process 
•  Fork is expensive (time & memory) 

• Thread 
•  A lightweight process: little memory, fast startup 
•  Shared memory among threads in a process 
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Processes vs. threads 

Environment (resource) 
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Processes vs. threads 

• Each process can include many threads 

• All threads of a process share:  
•  Process ID 
•  Memory (program code and global data) 
•  Open file/socket descriptors 
•  Working environment (current directory, user ID, etc.) 
•  Semaphores (covered later in the course) 
•  Signal handlers and signal dispositions (covered later in the course) 
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Thread usage: word processor 

• Working file can only be accessed by one process at a time 

What would happen if 
this were single-

threaded? 
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Thread usage: word processor 

• Working file can only be accessed by one process at a time 
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Thread usage: web server 

What would happen if 
this were single-

threaded? 
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Thread of execution 

• Sequential set of instructions 
•  Each has its own function calls & automatic (local) variables 
•  Need program counter and stack for each thread 



33 

Normal 1-thread function call 

processfd(); 
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Thread of execution 
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Compare: Threaded function call 

pthread_create(); 
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Thread Execution States 

• Events associated with a change in thread state: 
•  Spawn (another thread) 
•  Block 

  Should blocking a thread block other, or all, threads? 
•  Unblock 
•  Finish (thread) 

  De-allocate register context and stacks 
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Thread-Specific Resources 

• Each thread has its own 
•  Thread ID (integer) 
•  Stack, Registers, Program Counter 

• Threads in one process can communicate via shared memory 
•  Must be done carefully! 
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Processes vs. Threads 

• Each thread executes separately 

• Threads in the same process share many resources 

• No protection among threads!! (What?) 

Per Process Items Per Thread Items 
Address space 
Global variables 
Open files 
Child processes 
Pending alarms 
Signals and signal handlers 
Accounting information 

Program counter 
Registers 
Stack 
State 
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Process vs. thread creation 

• http://www.llnl.gov/computing/tutorials/pthreads.  

• Timings reflect 50,000 process/thread  

• Creations were performed with the time utility, and units are in seconds, no optimization flags. 

Platform 
fork() pthread_create() 

real user sys real user sys 
AMD 2.3 GHz Opteron (16 cpus)  12.5 1.0 12.5 1.2 0.2 1.3 
AMD 2.4 GHz Opteron (8 cpus)  17.6 2.2 15.7 1.4 0.3 1.3 
IBM 4.0 GHz POWER6 (8 cpus)  9.5 0.6 8.8 1.6 0.1 0.4 
IBM 1.9 GHz POWER5 p5-575 (8 cpus)  64.2 30.7 27.6 1.7 0.6 1.1 
IBM 1.5 GHz POWER4 (8 cpus)  104.5 48.6 47.2 2.1 1.0 1.5 
INTEL 2.4 GHz Xeon (2 cpus)  54.9 1.5 20.8 1.6 0.7 0.9 
INTEL 1.4 GHz Itanium2 (4 cpus)  54.5 1.1 22.2 2.0 1.2 0.6 
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Key points 

• Threads are lightweight 
•  Is this good or bad? 

• Threads share memory and other resources 
•  (Still have own stack, registers, PC, state) 
•  Is this good or bad? 
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Next time 

• Monday: Using threads 

• Tuesday: MP3 Shell due 


