
1

Processes: A System View

CS 241

February 17, 2012

Copyright © University of Illinois CS 241 Staff

2

What the OS does: 2 State Model

Processes

not
running running

pause

dispatch

enter exit

3

What the OS does: 2 State Model

Processes

System

not
running running

pause

dispatch

enter exit

enter exit
processor

pause

dispatch
queue

4

2 State Model

Processes

System

not
running running

pause

dispatch

enter exit

enter exit
processor

pause

dispatch
queue

What information do
we need to keep

while in the queue?

5

What the OS stores: PCB

• OS stores Process Control Block (PCB) for each process
•  In-memory OS structure
•  User processes cannot access it

• Contents:
•  Identifiers

  pid & ppid (process ID & parent process ID)
•  Processor state information

  User-visible registers, control and status, stack
•  Scheduling information

  Process state, priority, what event the process is waiting for, ...

6

What the OS stores: PCB

• Contents (cont’d):
•  Inter-process communication

  Signals
•  Privileges

  CPU instructions, memory
•  Memory Management

  e.g., Page tables
•  Resource ownership and utilization

7

Five State Process Model

“All models are wrong. Some Models are Useful”
•  George Box, statistician

• 2 state model
•  Too simplistic
•  What does “Not Running” mean?

• 7 state model
•  Considers suspending process to disk
•  See Stallings book, section 3.2

• Next: 5 state model

8

5 State Model: States

not
running

running

9

5 State Model: States

ready

running

blocked

10

5 State Model: States

new ready

running done

blocked

11

5 State Model: Summary

• Running
•  Currently executing
•  On a single processor machine, at most one process in the “running” state

• Ready
•  Prepared to execute

• Blocked
•  Waiting on some event

• New
•  Created, but not loaded into memory

• Done
•  Released from pool of executing processes

12

5 State Model: Transitions

• Null (nothing) to New
•  New process creation

new ready

running done

blocked

enter

13

5 State Model: Transitions

• New to Ready
•  Move to pool of

executable
processes

new ready

running done

blocked

14

5 State Model: Transitions

• Ready to Running
•  Chosen to run from

the pool of
processes (How?)

new ready

running done

blocked

15

5 State Model: Transitions

• What events cause these transitions?

new ready

running done

blocked

16

5 State Model: Transitions

• Running to Ready
•  Preempted by OS

• Running to Blocked
•  Request for an

unavailable resource

• Running to Done
•  Terminated / completed

new ready

running done

blocked

17

5 State Model: Transitions

• Blocked to Ready
•  Resource is now available

new ready

running done

blocked

18

5 State Model: Transitions

• Ready to Done
•  Terminated by another process

• Blocked to Done
•  Terminated by another process

new ready

running done

blocked

19

5 State Model: Transitions

new ready

running done

blocked

created

normal or abnormal termination

quantum
expired

I/O
request

I/O complete

selected to
run enter

20

Process Queue Model

enter exit
processor

dispatch
ready queue

blocked queue

timeout

event wait

enter exit
processor

dispatch
queue
2 State Model: What is missing?

Process exceeds
time quanta

Process makes
systems call

21

Process Queue Model

enter exit
processor

dispatch
ready queue

event 1 queue

timeout

event 1 wait

event 2 queue
event 2 wait

event 3 queue
event n wait

…

What do we
gain with

multiple queues?

22

Process Queue Model

enter exit
processor

dispatch
ready queue

priority 1 queue

timeout

priority 1 wait

priority 2 queue
priority 2 wait

priority 3 queue
priority n wait

…

What do we
gain with

multiple queues?

23

Take-away questions

• What would happen if user processes were allowed to disable
interrupts?

• In a single CPU system what is the maximum number of
processes that can be in the running state?

24

From Processes to Threads

CS 241

February 17, 2012

Copyright © University of Illinois CS 241 Staff

25

Processes vs. threads

• Process
•  Fork is expensive (time & memory)

• Thread
•  A lightweight process: little memory, fast startup
•  Shared memory among threads in a process

26

Processes vs. threads

Environment (resource)

execution

Three processes each with
one thread

One process with
three threads

27

Processes vs. threads

• Each process can include many threads

• All threads of a process share:
•  Process ID
•  Memory (program code and global data)
•  Open file/socket descriptors
•  Working environment (current directory, user ID, etc.)
•  Semaphores (covered later in the course)
•  Signal handlers and signal dispositions (covered later in the course)

28

Thread usage: word processor

• Working file can only be accessed by one process at a time

What would happen if
this were single-

threaded?

29

Thread usage: word processor

• Working file can only be accessed by one process at a time

30

Thread usage: web server

What would happen if
this were single-

threaded?

32

Thread of execution

• Sequential set of instructions
•  Each has its own function calls & automatic (local) variables
•  Need program counter and stack for each thread

33

Normal 1-thread function call

processfd();

processfd() {

}

Calling program
Called function

Thread of execution

34

Compare: Threaded function call

pthread_create();

processfd() {

}

Creating program
Created thread

processfd();

processfd() {

}

Calling program
Called function

Thread creation
Thread of execution

35

Thread Execution States

• Events associated with a change in thread state:
•  Spawn (another thread)
•  Block

  Should blocking a thread block other, or all, threads?
•  Unblock
•  Finish (thread)

  De-allocate register context and stacks

36

Thread-Specific Resources

• Each thread has its own
•  Thread ID (integer)
•  Stack, Registers, Program Counter

• Threads in one process can communicate via shared memory
•  Must be done carefully!

37

Processes vs. Threads

• Each thread executes separately

• Threads in the same process share many resources

• No protection among threads!! (What?)

Per Process Items Per Thread Items
Address space
Global variables
Open files
Child processes
Pending alarms
Signals and signal handlers
Accounting information

Program counter
Registers
Stack
State

38

Process vs. thread creation

• http://www.llnl.gov/computing/tutorials/pthreads.

• Timings reflect 50,000 process/thread

• Creations were performed with the time utility, and units are in seconds, no optimization flags.

Platform
fork() pthread_create()

real user sys real user sys
AMD 2.3 GHz Opteron (16 cpus) 12.5 1.0 12.5 1.2 0.2 1.3
AMD 2.4 GHz Opteron (8 cpus) 17.6 2.2 15.7 1.4 0.3 1.3
IBM 4.0 GHz POWER6 (8 cpus) 9.5 0.6 8.8 1.6 0.1 0.4
IBM 1.9 GHz POWER5 p5-575 (8 cpus) 64.2 30.7 27.6 1.7 0.6 1.1
IBM 1.5 GHz POWER4 (8 cpus) 104.5 48.6 47.2 2.1 1.0 1.5
INTEL 2.4 GHz Xeon (2 cpus) 54.9 1.5 20.8 1.6 0.7 0.9
INTEL 1.4 GHz Itanium2 (4 cpus) 54.5 1.1 22.2 2.0 1.2 0.6

39

Key points

• Threads are lightweight
•  Is this good or bad?

• Threads share memory and other resources
•  (Still have own stack, registers, PC, state)
•  Is this good or bad?

41

Next time

• Monday: Using threads

• Tuesday: MP3 Shell due

