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Today 

• Concurrency & Context Switching 

• Process Control Block 
•  What's in it and why? How is it used? Who sees it? 

• 5 State Process Model 
•  State Labels. Causes of State Transitions. Impossible Transitions. 

• MP2 Awards 
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Concurrency 

• What is a sequential program? 
•  A single sequence of control that executes one instruction at a time 
•  Use system() 

• What is a concurrent program? 
•  A collection of autonomous sequential programs, executing (logically) in 

parallel 
•  Use fork() 



5 

#include <stdio.h> 
#include <sys/types.h> 
#include <unistd.h> 
 
int main() {  
    pid_t pid;  
    int i; 
 
    if(pid = fork()) {  /* parent */ 
 
    } 
    else {    /* child */ 
 
    } 
 
    return 0; 
} 

What is fork good for? 

childProcedures(); 

parentProcedures(); 
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#include <stdio.h> 
#include <sys/types.h> 
#include <unistd.h> 
 
int main() {  
    pid_t pid;  
    int i; 
 
    while (1) { 
 
        if(pid = fork()) { /* parent */ 
 
        } 
        else {   /* child */ 
 
        } 
    } 
    return 0; 
} 

What is fork good for? 

handleNewClient(); 

resetServer(); 

waitForClients(); 
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Why Concurrency? 

• Natural application structure 
•  The world is not sequential!  
•  Easier to program multiple independent and concurrent activities 

• Better resource utilization 
•  Resources unused by one application can be used by the others 

• Better average response time 
•  No need to wait for other applications to complete 
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Benefits of Concurrency  
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Benefits of Concurrency 
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On a single CPU system… 

• Only one process can use the CPU at a time 
•  Uniprogramming: only one process resident at a time 
•  But we want the appearance of every process running at the same time 

• How can we manage CPU usage? 
•  “Resource Management” 
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On a single CPU system… 

• Your process is currently using the CPU 

• What are other processes doing? 

long count = 0; 
while (count >= 0) 
    count++; 
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On a single CPU system… 

• Answer 
•  Nothing 

• What can the OS do to help? 
•  Naively… Put the current process on ‘pause’ 

• What are our options? 
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How can the OS help share CPU time? 

• Time slicing 
•  Use a hardware timer to generate a hardware interrupt 

• Multiprogramming  
•  Multiple processes resident at a time 
•  Wait until the process issues a system call 

  e.g., I/O request 

• Cooperative multitasking 
•  Let the user process yield the CPU 
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Time slicing 

• A process loses the CPU when its time quantum has expired 

• Advantages? 

• Disadvantages? 

long count = 0; 
while(count >=0) 
   count ++; 
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Multiprogramming 

• Wait until system call 

• Advantages? 

• Disadvantages? 

long count = 0; 
while(count >=0) { 
   printf(“Count = %d\n”, cnt); 
   count ++; 
} 
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Cooperative Multitasking 

• Wait until the process gives up the CPU 

• Advantages? 

• Disadvantages? 
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long count = 0; 
while(count >=0) { 
   count ++; 
   if(count % 10000 == 0) 
      yield(); 
} 
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Context Switch 

• Overhead to re-assign CPU to another user process 

• What activities are required? 
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Context Switch 

• Overhead to re-assign CPU to another user process 
•  Capture state of the user's processes so that we can restart it later 

(CPU Registers) 
•  Queue management (e.g. put process on “waiting” queue) 
•  Accounting 
•  Scheduler chooses next process 
•  Run next process 
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2 State Model 
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2 State Model 
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2 State Model 
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Process Control Block (PCB) 

• In-memory OS structure  
•  User processes cannot access it 

• Contents: 
•  Identifiers  

  pid & ppid (process ID & parent process ID) 
•  Processor state information  

  User-visible registers, control and status, stack 
•  Scheduling information  

  Process state, priority, what event the process is waiting for, ... 
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PCB (more) 

• Contents (cont’d): 
•  Inter-process communication  

  Signals 
•  Privileges  

  CPU instructions, memory 
•  Memory Management  

  Segments, VM control 'page tables' 
•  Resource ownership and utilization 
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Five State Process Model 

“All models are wrong. Some Models are Useful” 
•  George Box, statistician 

• 2 state model 
•  Too simplistic 
•  What does “Not Running” mean? 

• 7 state model  
•  Considers suspending process to disk 
•  See Stallings 3.2 

• Next: 5 state model 
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Malloc Contest Awards! 


