
1

Processes: A System View

CS 241

February 15, 2012

Copyright ©: University of Illinois CS 241 Staff

2

Today

• Concurrency & Context Switching

• Process Control Block
•  What's in it and why? How is it used? Who sees it?

• 5 State Process Model
•  State Labels. Causes of State Transitions. Impossible Transitions.

• MP2 Awards

3

Concurrency

• What is a sequential program?
•  A single sequence of control that executes one instruction at a time
•  Use system()

• What is a concurrent program?
•  A collection of autonomous sequential programs, executing (logically) in

parallel
•  Use fork()

5

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {
 pid_t pid;
 int i;

 if(pid = fork()) { /* parent */

 }
 else { /* child */

 }

 return 0;
}

What is fork good for?

childProcedures();

parentProcedures();

6

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {
 pid_t pid;
 int i;

 while (1) {

 if(pid = fork()) { /* parent */

 }
 else { /* child */

 }
 }
 return 0;
}

What is fork good for?

handleNewClient();

resetServer();

waitForClients();

7

Why Concurrency?

• Natural application structure
•  The world is not sequential!
•  Easier to program multiple independent and concurrent activities

• Better resource utilization
•  Resources unused by one application can be used by the others

• Better average response time
•  No need to wait for other applications to complete

8

Benefits of Concurrency

Keyboard

CPU

Disk

Time

Keyboard

CPU

Disk

Wait for input

Wait for input

Input

N
o

C
on

cu
rr

en
cy

W

ith
 C

on
cu

rr
en

cy

9

Benefits of Concurrency

Client 1

Client 2

Client 3

Time

Client 1

Client 2

Client 3

Wait for input

Wait for input

Input

N
o

C
on

cu
rr

en
cy

W

ith
 C

on
cu

rr
en

cy

10

On a single CPU system…

• Only one process can use the CPU at a time
•  Uniprogramming: only one process resident at a time
•  But we want the appearance of every process running at the same time

• How can we manage CPU usage?
•  “Resource Management”

11

On a single CPU system…

• Your process is currently using the CPU

• What are other processes doing?

long count = 0;
while (count >= 0)
 count++;

12

On a single CPU system…

• Answer
•  Nothing

• What can the OS do to help?
•  Naively… Put the current process on ‘pause’

• What are our options?

13

How can the OS help share CPU time?

• Time slicing
•  Use a hardware timer to generate a hardware interrupt

• Multiprogramming
•  Multiple processes resident at a time
•  Wait until the process issues a system call

  e.g., I/O request

• Cooperative multitasking
•  Let the user process yield the CPU

14

Time slicing

• A process loses the CPU when its time quantum has expired

• Advantages?

• Disadvantages?

long count = 0;
while(count >=0)
 count ++;

15

Multiprogramming

• Wait until system call

• Advantages?

• Disadvantages?

long count = 0;
while(count >=0) {
 printf(“Count = %d\n”, cnt);
 count ++;
}

16

Cooperative Multitasking

• Wait until the process gives up the CPU

• Advantages?

• Disadvantages?

Copyright ©: University of Illinois CS 241 Staff

long count = 0;
while(count >=0) {
 count ++;
 if(count % 10000 == 0)
 yield();
}

18

Context Switch

• Overhead to re-assign CPU to another user process

• What activities are required?

Copyright ©: University of Illinois CS 241 Staff

19

Context Switch

• Overhead to re-assign CPU to another user process
•  Capture state of the user's processes so that we can restart it later

(CPU Registers)
•  Queue management (e.g. put process on “waiting” queue)
•  Accounting
•  Scheduler chooses next process
•  Run next process

Copyright ©: University of Illinois CS 241 Staff

20

2 State Model

Processes

Copyright ©: University of Illinois CS 241 Staff

not
running running

pause

dispatch

enter exit

21

2 State Model

Processes

System

not
running running

pause

dispatch

enter exit

enter exit
processor

pause

dispatch
queue

22

2 State Model

Processes

System

not
running running

pause

dispatch

enter exit

enter exit
processor

pause

dispatch
queue

What information do
we need to keep in

the queue?

23

Process Control Block (PCB)

• In-memory OS structure
•  User processes cannot access it

• Contents:
•  Identifiers

  pid & ppid (process ID & parent process ID)
•  Processor state information

  User-visible registers, control and status, stack
•  Scheduling information

  Process state, priority, what event the process is waiting for, ...

24

PCB (more)

• Contents (cont’d):
•  Inter-process communication

  Signals
•  Privileges

  CPU instructions, memory
•  Memory Management

  Segments, VM control 'page tables'
•  Resource ownership and utilization

Copyright ©: University of Illinois CS 241 Staff

25

Five State Process Model

“All models are wrong. Some Models are Useful”
•  George Box, statistician

• 2 state model
•  Too simplistic
•  What does “Not Running” mean?

• 7 state model
•  Considers suspending process to disk
•  See Stallings 3.2

• Next: 5 state model

Copyright ©: University of Illinois CS 241 Staff

26

Malloc Contest Awards!

