
1

Processes: Introduction

CS 241
February 13, 2012

2

MP2 due tomorrow	

Deadline and contest cutoff 11:59 p.m.	

Fabulous prizes on Wednesday	

MP3 out Wednesday: Shell (1 week)	

Code from this lecture posted after class	

Announcements

3

Definition: A process is an instance of a running program.	

•  One of the most profound ideas in computer science	

•  Not the same as “program” or “processor”	

Process provides each program with two key abstractions:	

•  Logical control flow

  Each program seems to have exclusive use of the CPU	

•  Private virtual address space	

  Each program seems to have exclusive use of main memory	

How are these illusions maintained?	

•  Process executions interleaved (multitasking) or run on separate cores	

•  Address spaces managed by virtual memory system	

Processes

4

Two processes run concurrently (are concurrent) if their flows
overlap in time	

Otherwise, they are sequential	

Examples (running on single core):	

•  Concurrent: A & B, A & C	

•  Sequential: B & C	

Concurrent Processes

Process	
 A	
 Process	
 B	
 Process	
 C	

Time	

5

Control flows for concurrent processes are physically
disjoint in time	

However, we can think of concurrent processes as running
in parallel with each other	

User View of Concurrent Processes

Time	

Process	
 A	
 Process	
 B	
 Process	
 C	

6

Processes are managed by a shared chunk of OS code ���
called the kernel	

•  Important: the kernel is not a separate process, but rather runs as part

of some user process	

Control flow passes from one process to another via a context
switch	

Context Switching

Process	
 A	
 Process	
 B	

user	
 code	

kernel	
 code	

user	
 code	

kernel	
 code	

user	
 code	

context	
 switch	

context	
 switch	

Time	

7

int fork(void)	

•  creates a new process (child process) that is identical to the calling

process (parent process)	

•  returns 0 to the child process	

•  returns child’s pid (process id) to the parent process	

Fork is interesting (and often confusing) because ���
it is called once but returns twice	

	

fork: Creating New Processes

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

8

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Process	
 n	

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Child	
 Process	
 m	

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

pid	
 =	
 m	

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

pid	
 =	
 0	

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

hello from parent hello from child Which	
 one	
 is	
 first?	

Understanding fork

9

Parent and child both run same code	

•  Distinguish parent from child by return value from fork

Start with same state, but each has private copy	

•  Including shared output file descriptor	

•  Relative ordering of their print statements undefined	

void fork1()
{
 int x = 1;
 pid_t pid = fork();
 if (pid == 0) {

 printf("Child has x = %d\n", ++x);
 } else {

 printf("Parent has x = %d\n", --x);
 }
 printf("Bye from process %d with x = %d\n", getpid(), x);
}

Fork Example #1

13

#define bork fork

void fork3()
{
 bork(); bork(); bork();
 printf(”borked\n");
}

Fork Example #2

14

Three consecutive forks	

#define bork fork

void fork3()
{
 bork(); bork(); bork();
 printf(”borked\n");
}

borked

borked

borked

borked

borked

borked

borked

borked

Fork Example #2

15

Three consecutive forks	

void fork3()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
} L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0

Fork Example #3

16

Nested forks in parent	

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {

 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 fork();
 }

 }
 printf("Bye\n");
}

L0 L1

Bye

L2

Bye

Bye

Bye

Fork Example #4

17

Nested forks in children	

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {

 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 fork();
 }

 }
 printf("Bye\n");
}

L0 Bye

L1

Bye

Bye

Bye

L2

Fork Example #5

18

void exit(int status)	

•  exits a process	

  Normally return with status 0	

•  atexit() registers functions to be executed upon exit	

exit: Ending a process

void cleanup(void) {
 printf("cleaning up\n");
}

void fork6() {
 atexit(cleanup);
 fork();
 exit(0);
}

19

What happens on termination?	

•  When process terminates, still consumes system resources	

•  Various tables & info maintained by OS	

Called a “zombie”	

•  Living corpse, half alive and half dead	

Zombies

20

What happens on termination?	

•  When process terminates, still consumes system resources	

•  Various tables & info maintained by OS	

Called a “zombie”	

•  Living corpse, half alive and half dead	

Reaping	

•  Performed by parent on terminated child (using wait or waitpid)	

•  Parent is given exit status information	

•  Kernel discards process	

What if parent doesn’t reap?	

•  If any parent terminates without reaping a child, then child will be

reaped by init process (pid == 1)	

•  So, only need explicit reaping in long-running processes	

  e.g., shells and servers	

Zombies

21

Zombie Example

Fig.	
 1.	
 Exemplary	
 Zombies.	

22

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

ps shows child process as “defunct”	

	

Killing parent allows child to be
reaped by init

void fork7()
{
 if (fork() == 0) {

 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);

 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */

 }
}

Zombie Example

23

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

Child process still active even though
parent has terminated	

•  Child is an orphan	

	

Must kill explicitly, or else will keep
running indefinitely	

Nonterminating
Child Example

void fork8()
{
 if (fork() == 0) {

 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */

 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);

 }
}

24

Parent reaps child by calling the wait function	

int wait(int *child_status)	

•  suspends current process until one of its children terminates	

•  return value is the pid of the child process that terminated	

•  if child_status != NULL, then the object it points to will be set to

a status indicating why the child process terminated	

Professional code uses signal handler (CS241 later lecture) for
signal SIGCHLD which issues a wait() call	

wait: synchronizing with children

25

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

HP

HC Bye

CT Bye

wait: synchronizing with children

26

If multiple children completed, will take in arbitrary order	

Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status	

wait() Example

void fork10()
{
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */

 for (i = 0; i < N; i++) {
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminate abnormally\n", wpid);

 }
}

27

waitpid(pid, &status, options)
•  suspends current process until specific process terminates	

•  various options (see man page or textbook)	

waitpid(): Waiting for a Specific Process

void fork11()
{
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */

 for (i = N-1; i >= 0; i--) {
 pid_t wpid = waitpid(pid[i], &child_status, 0);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);

 }
}

28

int execve(
 char *filename,
 char *argv[],
 char *envp[]
)	

Loads and runs in current process:	

•  Executable filename
•  With argument list argv
•  And environment variable list envp

Does not return (unless error)	

Overwrites code, data, and stack	

•  keeps pid, open files and signal context	

execve: Loading and Running Programs
Null-­‐terminated	

env	
 var	
 strings	

unused

Null-­‐terminated	

cmd	
 line	
 arg	
 strings	

envp[n]	
 ==	
 NULL
envp[n-­‐1]

envp[0]
…

Linker	
 vars

argv[argc]	
 ==	
 NULL
argv[argc-­‐1]

argv[0]
…

envp

argc
argv

Stack	
 bo;om	

Stack	
 frame	
 for	
 	

main Stack	
 top	

environ

29

int execve(
 char *filename,
 char *argv[],
 char *envp[]
)	

Environment variables:	

•  “name=value” strings	

•  getenv and putenv

Simpler variants: execlp, execv, ...	

execve: Loading and Running Programs
Null-­‐terminated	

env	
 var	
 strings	

unused

Null-­‐terminated	

cmd	
 line	
 arg	
 strings	

envp[n]	
 ==	
 NULL
envp[n-­‐1]

envp[0]
…

Linker	
 vars

argv[argc]	
 ==	
 NULL
argv[argc-­‐1]

argv[0]
…

envp

argc
argv

Stack	
 bo;om	

Stack	
 frame	
 for	
 	

main Stack	
 top	

environ

30

execve Example

envp[n]	
 =	
 NULL
envp[n-­‐1]

envp[0]
…

argv[argc]	
 =	
 NULL
argv[argc-­‐1]

argv[0]
…

“ls”
“-lt”
“/usr/include”

“USER=pbg”
“SHELL=/bin/bash”
“PWD=/Users/pbg”

environ

argv

if ((pid = fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, env) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
}

31

Processes	

•  At any given time, system has multiple active processes	

•  But only one can execute at a time on a single core	

•  Each process appears to have total control of ���

processor + private memory space	

Summary

32

Spawning processes	

•  Call fork
•  One call, two returns	

Process completion	

•  Call exit
•  One call, no return	

Reaping and waiting for processes	

•  Call wait or waitpid

Loading and running programs	

•  Call execve (or “front-end” variant)	

•  One call, (normally) no return	

Summary (cont.)

