
CS 241
February 10, 2012

Copyright ©: University of Illinois CS 241 Staff 1

Paging algorithms

Announcements
  MP2 due Tuesday
  Fabulous Prizes Wednesday!

2

Paging
  On heavily-loaded systems, memory can fill up
  Need to make room for newly-accessed pages

  Heuristic: try to move “inactive” pages out to disk
  What constitutes an “inactive” page?

  Paging
  Refers to moving individual pages out to disk, and back
  We often use the terms “paging” and “swapping”

interchangeably
  Different from context switching

  Background processes often have their pages remain resident
in memory

  Paging could occur even with only one process running

3

Basic Page Replacement
  Find the location of the desired page on disk
  Find a free frame

  If there is a free frame, use it
  If there is no free frame, use a page replacement

algorithm to select a victim frame
  Read the desired page into the (newly) free frame. Update

the page and frame tables.

  Note: can also evict in advance
  OS keeps pool of “free pages” around, even when

memory is tight
  Makes allocating a new page fast
  The process of evicting pages to disk is then performed

in the background 4

Exploiting Locality
  Exploiting locality

  Temporal locality: Memory accessed recently tends to be
accessed again soon

  Spatial locality: Memory locations near recently-accessed
memory is likely to be referenced soon

  Locality helps to reduce the frequency of paging
  Once something is in memory, it should be used many

times

  This depends on many things:
  The amount of locality and reference patterns in a

program
  The page replacement algorithm
  The amount of physical memory and the application

footprint 5

Fundamental technique: caching
  A cache keeps a subset of a data set in a more accessible

but space-limited location

  Caches are everywhere in systems
  Such as…?

6

Fundamental technique: caching
  A cache keeps a subset of a data set in a more accessible

but space-limited location

  Caches are everywhere in systems
  Registers are a cache for L1 cache which is a cache for L2 cache

which is a cache for memory which is a cache for disk which
might be a cache for a remote file server

  Web proxy servers make downloads faster & cheaper
  Web browser stores downloaded files
  Local DNS servers remember recently-resolved DNS names
  Google servers remember your searches

  Key goal: minimize cache miss rate
  = minimize page fault rate (in context of paging)
  Requires a good algorithm 7

Evicting the Best Page
  Goal of the page replacement algorithm:

  Reduce page fault rate by selecting the best page to evict

  The “best” pages are those that will never be used again
  However, it's impossible to know in general whether a page will be

touched
  If you have information on future access patterns, it is possible to

prove that evicting those pages that will be used the furthest in the
future will minimize the page fault rate

  What is the best algorithm for deciding the order to evict
pages?
  Much attention has been paid to this problem.
  Used to be a very hot research topic.
  These days, widely considered solved (at least, solved well

enough)

8

Algorithm: OPT (a.k.a. MIN)
  Evict page that won't be used for the longest time in the

future
  Of course, this requires that we can foresee the future...
  So OPT cannot be implemented!

  This algorithm has the provably optimal performance
  Hence the name “OPT”

  OPT is useful as a “yardstick” to compare the
performance of other (implementable) algorithms against

9

10

The Optimal Page
Replacement Algorithm

  Idea:
  Select the page that will not be needed for the

longest time in the future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a
b b b b
c c c c
d d d d

 X

Copyright ©: University of Illinois CS 241 Staff

11

The Optimal Page
Replacement Algorithm

  Idea:
  Select the page that will not be needed for the

longest time in the future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a a a a a a
b b b b b b b b b
c c c c c c c c c
d d d d e e e e e

 X X

Copyright ©: University of Illinois CS 241 Staff

12

The Optimal Page
Replacement Algorithm

  Idea:
  Select the page that will not be needed for the

longest time in the future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a a a a a a a
b b b b b b b b b b
c c c c c c c c c c
d d d d e e e e e d

 X X

Copyright ©: University of Illinois CS 241 Staff

Algorithms: Random and FIFO
  Random: Throw out a random page

  Obviously not the best scheme
  Although very easy to implement!

  FIFO: Throw out pages in the order that
they were allocated
  Maintain a list of allocated pages
  When the length of the list grows to cover all of

physical memory, pop first page off list and
allocate it

  Why might FIFO be good?
  Why might FIFO not be so good?

13

Algorithms: Random and FIFO
  FIFO: Throw out pages in the order that they were

allocated
  Maintain a list of allocated pages
  When the length of the list grows to cover all of physical

memory, pop first page off list and allocate it
  Why might FIFO be good?

  Maybe the page allocated very long ago isn’t used
anymore

  Why might FIFO not be so good?
  Doesn’t consider locality of reference!
  Suffers from Belady’s anomaly: Performance of an

application might get worse as the size of physical
memory increases!!!

14

Belady’s Anomaly

15

0 1 2 3 0 1 4 0 1 2 3 4

0 0

1

0

1

2

1

2

3

2

3

0

3

0

1

0

1

4

0

1

4

0

1

4

1

4

2

4

2

3

4

2

3

Access pattern

0 1 2 3 0 1 4 0 1 2 3 4
0 0

1

0

1

2

0

1

2
3

0

1

2
3

0

1

2
3

1

2

3
4

2

3

4
0

3

4

0
1

4

0

1
2

0

1

2
3

1

2

3
4

time

Physical memory
(3 page frames)

Access pattern

Physical memory
(4 page frames)

9 page faults!

10 page faults!

time

Algorithm: Least Recently Used (LRU)
  Evict the page that was used the longest time ago

  Keep track of when pages are referenced to make a
better decision

  Use past behavior to predict future behavior
  LRU uses past information, while OPT uses future information

  When does LRU work well, and when does it not?
  Implementation

  Every time a page is accessed, record a timestamp of
the access time

  When choosing a page to evict, scan over all pages
and throw out page with oldest timestamp

  Problems with this implementation?

16

Algorithm: Least Recently Used (LRU)
  Evict the page that was used the longest time ago

  Keep track of when pages are referenced to make a
better decision

  Use past behavior to predict future behavior
  LRU uses past information, while OPT uses future information

  When does LRU work well, and when does it not?

  Implementation
  Every time a page is accessed, record a timestamp of the

access time
  When choosing a page to evict, scan over all pages and

throw out page with oldest timestamp

  Problems with this implementation?
  32-bit timestamp would double size of PTE
  Scanning all of the PTEs for lowest timestamp: slow 17

18

Least Recently Used (LRU)
  Keep track of when a page is used
  Replace the page that has been used least

recently

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

Copyright ©: University of Illinois CS 241 Staff

19

Least Recently Used (LRU)
  Keep track of when a page is used
  Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a
b b b b
c c c c
d d d d

 X

Copyright ©: University of Illinois CS 241 Staff

20

Least Recently Used (LRU)
  Keep track of when a page is used
  Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a a a a a
b b b b b b b b
c c c c e e e e
d d d d d d d d

 X X

Copyright ©: University of Illinois CS 241 Staff

21

Least Recently Used (LRU)
  Keep track of when a page is used
  Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a a a a a a
b b b b b b b b b
c c c c e e e e e
d d d d d d d d c

 X X X

Copyright ©: University of Illinois CS 241 Staff

22

Least Recently Used (LRU)
  Keep track of when a page is used
  Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a a a a a a a
b b b b b b b b b b
c c c c e e e e e d
d d d d d d d d c c

 X X X

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used
  3 frames of physical memory
  Run this for a long time with LRU page replacement:

  Q1: What fraction of page accesses are faults?
  None or almost none
  About 1 in 4
  About 2 in 4
  About 3 in 4
  All or almost all

  Q2: How well does OPT do?
23

while true!
 for (i = 0; i < 4; i++)!
 read from page i!

24

Least Recently Used
  3 frames of physical memory
  Run this for a long time with LRU page replacement:

  Q1: What fraction of page accesses are faults?
  None or almost none
  About 1 in 4
  About 2 in 4
  About 3 in 4
  All or almost all – least recently used is always next to be used!

  Q2: How well does OPT do?
25

while true!
 for (i = 0; i < 4; i++)!
 read from page i!

Least Recently Used Issues
  Not optimal
  Does not suffer from Belady's anomaly
  Implementation

  Use time of last reference
  Update every time page accessed (use system clock)
  Page replacement - search for smallest time

  Use a stack
  On page access : remove from stack, push on top
  Victim selection: select page at bottom of stack

  Both approaches require large processing overhead, more
space, and hardware support.

Copyright ©: University of Illinois CS 241 Staff 26

Approximating LRU
  Use the PTE reference bit and a small counter per page

  (Use a counter of, say, 2 or 3 bits in size, and store it in the PTE)

  Periodically (say every 100 msec), scan all physical pages
in the system. For each page:
  If not accessed recently, (PTE reference bit == 0), counter++!
  If accessed recently (PTE reference bit == 1), counter = 0!
  Clear the PTE reference bit in either case!

  Counter will contain the number of scans since the last
reference to this page.
  PTE that contains the highest counter value is the least recently

used
  So, evict the page with the highest counter

27

Approximate LRU Example

28

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 1 1 0 1 0 1 1 0 0

tim
e Accessed pages

in blue

0 1 1 1 0 0 1 1 0 1 0 1 1 0 0
Increment counter
for untouched pages

0 2 0 0 0 1 2 2 0 0 1 0 2 1 0
These pages have
the highest counter
value and can be
evicted.

Algorithm: LRU Second-Chance (Clock)
  LRU requires searching for the page with the highest last-

ref count
  Can do this with a sorted list or a second pass to look for the

highest value

  Simpler technique: Second-chance algorithm
  “Clock hand” scans over all physical pages in the system

  Clock hand loops around to beginning of memory when it gets to end

  If PTE reference bit == 1, clear bit and advance hand to give it a
second-chance

  If PTE reference bit == 0, evict this page
  No need for a counter in the PTE!

29 Clock hand

Accessed pages
in blue

Evict!

Algorithm: LRU Second-Chance (Clock)
  This is a lot like LRU, but operates in an iterative

fashion
  To find a page to evict, just start scanning from current

clock hand position
  What happens if all pages have ref bits set to 1?
  What is the minimum “age” of a page that has the ref

bit set to 0?
  Slight variant -- “nth chance clock”

  Only evict page if hand has swept by N times
  Increment per-page counter each time hand passes

and ref bit is 0
  Evict a page if counter ≥ N
  Counter cleared to 0 each time page is used

30

Swap Files
  What happens to the page that we choose to evict?

  Depends on what kind of page it is and what state it's
in!

  OS maintains one or more swap files or partitions on disk
  Special data format for storing pages that have been

swapped out

31

Swap Files
  How do we keep track of where things are on disk?

  Recall PTE format
  When V bit is 0, can recycle the PFN field to remember something

about the page.

  But ... not all pages are swapped in from swap files!
  E.g., what about executables?

32

Swap file offset Swap file index 0

5 bits 24 bits

Swap file table
(max 32 entries)

Swap file (max 224 pages = 64 GB)

V bit

Page Eviction
  How we evict a page depends on its type.
  Code page:

  Just remove it from memory – can recover it from the executable
file on disk!

  Unmodified (clean) data page:
  If the page has previously been swapped to disk, just remove it

from memory
  Assuming that page's backing store on disk has not been overwritten

  If the page has never been swapped to disk, allocate new swap
space and write the page to it

  Exception: unmodified zero page – no need to write out to swap at
all!

  Modified (dirty) data page:
  If the page has previously been swapped to disk, write page out to

the swap space
  If the page has never been swapped to disk, allocate new swap

space and write the page to it 33

Physical Frame Allocation
  How do we allocate physical memory across multiple

processes?
  What if Process A needs to evict a page from Process B?
  How do we ensure fairness?
  How do we avoid having one process hogging the entire memory

of the system?
  Local replacement algorithms

  Per-process limit on the physical memory usage of each process
  When a process reaches its limit, it evicts pages from itself

  Global-replacement algorithms
  Physical size of processes can grow and shrink over time
  Allow processes to evict pages from other processes

  Note that one process' paging can impact performance of
entire system!
  One process that does a lot of paging will induce more disk I/O

34

Working Set
  A process's working set is the set of pages that it currently

“needs”
  Definition:

  WS(P, t, w) = the set of pages that process P accessed in the time
interval [t-w, t]

  “w” is usually counted in terms of number of page references
  A page is in WS if it was referenced in the last w page references

  Working set changes over the lifetime of the process
  Periods of high locality exhibit smaller working set
  Periods of low locality exhibit larger working set

  Basic idea: Give process enough memory for its working
set
  If WS is larger than physical memory allocated to process, it will

tend to swap
  If WS is smaller than memory allocated to process, it's wasteful
  This amount of memory grows and shrinks over time

35

Estimating the Working Set
  How do we determine the working set?
  Simple approach: modified clock algorithm

  Sweep the clock hand at fixed time intervals
  Record how many seconds since last page reference
  All pages referenced in last T seconds are in the working set

  Now that we know the working set, how do we allocate
memory?
  If working sets for all processes fit in physical memory, done!
  Otherwise, reduce memory allocation of larger processes

  Idea: Big processes will swap anyway, so let the small jobs run
unencumbered

  Very similar to shortest-job-first scheduling: give smaller processes
better chance of fitting in memory

  How do we decide the working set time limit T?
  If T is too large, very few processes will fit in memory
  If T is too small, system will spend more time swapping

  Which is better?
36

Page Fault Frequency
  Dynamically tune memory size of process based on # page

faults
  Monitor page fault rate for each process (faults per sec)
  If page fault rate above threshold, give process more

memory
  Should cause process to fault less
  Doesn't always work!

  Recall Belady's Anomaly
  If page fault rate below threshold, reduce memory

allocation
  What happens when everyone’s page fault rate is high?

37

Thrashing
  As system becomes more loaded, spends more of its time paging

  Eventually, no useful work gets done!

  System is overcommitted!
  If the system has too little memory, the page replacement algorithm

doesn't matter
  Solutions?

  Change scheduling priorities to “slow down” processes that are thrashing
  Identify process that are hogging the system and kill them?

  Is thrashing a problem on systems with only one user? 38

Number of processes

C
P

U
 u

til
iz

at
io

n
Thrashing

