
CS 241
February 10, 2012

Copyright ©: University of Illinois CS 241 Staff 1

Paging algorithms

Announcements
  MP2 due Tuesday
  Fabulous Prizes Wednesday!

2

Paging
  On heavily-loaded systems, memory can fill up
  Need to make room for newly-accessed pages

  Heuristic: try to move “inactive” pages out to disk
  What constitutes an “inactive” page?

  Paging
  Refers to moving individual pages out to disk, and back
  We often use the terms “paging” and “swapping”

interchangeably
  Different from context switching

  Background processes often have their pages remain resident
in memory

  Paging could occur even with only one process running

3

Basic Page Replacement
  Find the location of the desired page on disk
  Find a free frame

  If there is a free frame, use it
  If there is no free frame, use a page replacement

algorithm to select a victim frame
  Read the desired page into the (newly) free frame. Update

the page and frame tables.

  Note: can also evict in advance
  OS keeps pool of “free pages” around, even when

memory is tight
  Makes allocating a new page fast
  The process of evicting pages to disk is then performed

in the background 4

Exploiting Locality
  Exploiting locality

  Temporal locality: Memory accessed recently tends to be
accessed again soon

  Spatial locality: Memory locations near recently-accessed
memory is likely to be referenced soon

  Locality helps to reduce the frequency of paging
  Once something is in memory, it should be used many

times

  This depends on many things:
  The amount of locality and reference patterns in a

program
  The page replacement algorithm
  The amount of physical memory and the application

footprint 5

Fundamental technique: caching
  A cache keeps a subset of a data set in a more accessible

but space-limited location

  Caches are everywhere in systems
  Such as…?

6

Fundamental technique: caching
  A cache keeps a subset of a data set in a more accessible

but space-limited location

  Caches are everywhere in systems
  Registers are a cache for L1 cache which is a cache for L2 cache

which is a cache for memory which is a cache for disk which
might be a cache for a remote file server

  Web proxy servers make downloads faster & cheaper
  Web browser stores downloaded files
  Local DNS servers remember recently-resolved DNS names
  Google servers remember your searches

  Key goal: minimize cache miss rate
  = minimize page fault rate (in context of paging)
  Requires a good algorithm 7

Evicting the Best Page
  Goal of the page replacement algorithm:

  Reduce page fault rate by selecting the best page to evict

  The “best” pages are those that will never be used again
  However, it's impossible to know in general whether a page will be

touched
  If you have information on future access patterns, it is possible to

prove that evicting those pages that will be used the furthest in the
future will minimize the page fault rate

  What is the best algorithm for deciding the order to evict
pages?
  Much attention has been paid to this problem.
  Used to be a very hot research topic.
  These days, widely considered solved (at least, solved well

enough)

8

Algorithm: OPT (a.k.a. MIN)
  Evict page that won't be used for the longest time in the

future
  Of course, this requires that we can foresee the future...
  So OPT cannot be implemented!

  This algorithm has the provably optimal performance
  Hence the name “OPT”

  OPT is useful as a “yardstick” to compare the
performance of other (implementable) algorithms against

9

10

The Optimal Page
Replacement Algorithm

  Idea:
  Select the page that will not be needed for the

longest time in the future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a
b b b b
c c c c
d d d d

 X

Copyright ©: University of Illinois CS 241 Staff

11

The Optimal Page
Replacement Algorithm

  Idea:
  Select the page that will not be needed for the

longest time in the future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a a a a a a
b b b b b b b b b
c c c c c c c c c
d d d d e e e e e

 X X

Copyright ©: University of Illinois CS 241 Staff

12

The Optimal Page
Replacement Algorithm

  Idea:
  Select the page that will not be needed for the

longest time in the future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a a a a a a a
b b b b b b b b b b
c c c c c c c c c c
d d d d e e e e e d

 X X

Copyright ©: University of Illinois CS 241 Staff

Algorithms: Random and FIFO
  Random: Throw out a random page

  Obviously not the best scheme
  Although very easy to implement!

  FIFO: Throw out pages in the order that
they were allocated
  Maintain a list of allocated pages
  When the length of the list grows to cover all of

physical memory, pop first page off list and
allocate it

  Why might FIFO be good?
  Why might FIFO not be so good?

13

Algorithms: Random and FIFO
  FIFO: Throw out pages in the order that they were

allocated
  Maintain a list of allocated pages
  When the length of the list grows to cover all of physical

memory, pop first page off list and allocate it
  Why might FIFO be good?

  Maybe the page allocated very long ago isn’t used
anymore

  Why might FIFO not be so good?
  Doesn’t consider locality of reference!
  Suffers from Belady’s anomaly: Performance of an

application might get worse as the size of physical
memory increases!!!

14

Belady’s Anomaly

15

0 1 2 3 0 1 4 0 1 2 3 4

0 0

1

0

1

2

1

2

3

2

3

0

3

0

1

0

1

4

0

1

4

0

1

4

1

4

2

4

2

3

4

2

3

Access pattern

0 1 2 3 0 1 4 0 1 2 3 4
0 0

1

0

1

2

0

1

2
3

0

1

2
3

0

1

2
3

1

2

3
4

2

3

4
0

3

4

0
1

4

0

1
2

0

1

2
3

1

2

3
4

time

Physical memory
(3 page frames)

Access pattern

Physical memory
(4 page frames)

9 page faults!

10 page faults!

time

Algorithm: Least Recently Used (LRU)
  Evict the page that was used the longest time ago

  Keep track of when pages are referenced to make a
better decision

  Use past behavior to predict future behavior
  LRU uses past information, while OPT uses future information

  When does LRU work well, and when does it not?
  Implementation

  Every time a page is accessed, record a timestamp of
the access time

  When choosing a page to evict, scan over all pages
and throw out page with oldest timestamp

  Problems with this implementation?

16

Algorithm: Least Recently Used (LRU)
  Evict the page that was used the longest time ago

  Keep track of when pages are referenced to make a
better decision

  Use past behavior to predict future behavior
  LRU uses past information, while OPT uses future information

  When does LRU work well, and when does it not?

  Implementation
  Every time a page is accessed, record a timestamp of the

access time
  When choosing a page to evict, scan over all pages and

throw out page with oldest timestamp

  Problems with this implementation?
  32-bit timestamp would double size of PTE
  Scanning all of the PTEs for lowest timestamp: slow 17

18

Least Recently Used (LRU)
  Keep track of when a page is used
  Replace the page that has been used least

recently

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

Copyright ©: University of Illinois CS 241 Staff

19

Least Recently Used (LRU)
  Keep track of when a page is used
  Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a
b b b b
c c c c
d d d d

 X

Copyright ©: University of Illinois CS 241 Staff

20

Least Recently Used (LRU)
  Keep track of when a page is used
  Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a a a a a
b b b b b b b b
c c c c e e e e
d d d d d d d d

 X X

Copyright ©: University of Illinois CS 241 Staff

21

Least Recently Used (LRU)
  Keep track of when a page is used
  Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a a a a a a
b b b b b b b b b
c c c c e e e e e
d d d d d d d d c

 X X X

Copyright ©: University of Illinois CS 241 Staff

22

Least Recently Used (LRU)
  Keep track of when a page is used
  Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests c a d b e b a b c d

Page 0 a
Frames 1 b
 2 c
 3 d

Page faults

a a a a a a a a a a
b b b b b b b b b b
c c c c e e e e e d
d d d d d d d d c c

 X X X

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used
  3 frames of physical memory
  Run this for a long time with LRU page replacement:

  Q1: What fraction of page accesses are faults?
  None or almost none
  About 1 in 4
  About 2 in 4
  About 3 in 4
  All or almost all

  Q2: How well does OPT do?
23

while true!
 for (i = 0; i < 4; i++)!
 read from page i!

24

Least Recently Used
  3 frames of physical memory
  Run this for a long time with LRU page replacement:

  Q1: What fraction of page accesses are faults?
  None or almost none
  About 1 in 4
  About 2 in 4
  About 3 in 4
  All or almost all – least recently used is always next to be used!

  Q2: How well does OPT do?
25

while true!
 for (i = 0; i < 4; i++)!
 read from page i!

Least Recently Used Issues
  Not optimal
  Does not suffer from Belady's anomaly
  Implementation

  Use time of last reference
  Update every time page accessed (use system clock)
  Page replacement - search for smallest time

  Use a stack
  On page access : remove from stack, push on top
  Victim selection: select page at bottom of stack

  Both approaches require large processing overhead, more
space, and hardware support.

Copyright ©: University of Illinois CS 241 Staff 26

Approximating LRU
  Use the PTE reference bit and a small counter per page

  (Use a counter of, say, 2 or 3 bits in size, and store it in the PTE)

  Periodically (say every 100 msec), scan all physical pages
in the system. For each page:
  If not accessed recently, (PTE reference bit == 0), counter++!
  If accessed recently (PTE reference bit == 1), counter = 0!
  Clear the PTE reference bit in either case!

  Counter will contain the number of scans since the last
reference to this page.
  PTE that contains the highest counter value is the least recently

used
  So, evict the page with the highest counter

27

Approximate LRU Example

28

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 1 1 0 1 0 1 1 0 0

tim
e Accessed pages

in blue

0 1 1 1 0 0 1 1 0 1 0 1 1 0 0
Increment counter
for untouched pages

0 2 0 0 0 1 2 2 0 0 1 0 2 1 0
These pages have
the highest counter
value and can be
evicted.

Algorithm: LRU Second-Chance (Clock)
  LRU requires searching for the page with the highest last-

ref count
  Can do this with a sorted list or a second pass to look for the

highest value

  Simpler technique: Second-chance algorithm
  “Clock hand” scans over all physical pages in the system

  Clock hand loops around to beginning of memory when it gets to end

  If PTE reference bit == 1, clear bit and advance hand to give it a
second-chance

  If PTE reference bit == 0, evict this page
  No need for a counter in the PTE!

29 Clock hand

Accessed pages
in blue

Evict!

Algorithm: LRU Second-Chance (Clock)
  This is a lot like LRU, but operates in an iterative

fashion
  To find a page to evict, just start scanning from current

clock hand position
  What happens if all pages have ref bits set to 1?
  What is the minimum “age” of a page that has the ref

bit set to 0?
  Slight variant -- “nth chance clock”

  Only evict page if hand has swept by N times
  Increment per-page counter each time hand passes

and ref bit is 0
  Evict a page if counter ≥ N
  Counter cleared to 0 each time page is used

30

Swap Files
  What happens to the page that we choose to evict?

  Depends on what kind of page it is and what state it's
in!

  OS maintains one or more swap files or partitions on disk
  Special data format for storing pages that have been

swapped out

31

Swap Files
  How do we keep track of where things are on disk?

  Recall PTE format
  When V bit is 0, can recycle the PFN field to remember something

about the page.

  But ... not all pages are swapped in from swap files!
  E.g., what about executables?

32

Swap file offset Swap file index 0

5 bits 24 bits

Swap file table
(max 32 entries)

Swap file (max 224 pages = 64 GB)

V bit

Page Eviction
  How we evict a page depends on its type.
  Code page:

  Just remove it from memory – can recover it from the executable
file on disk!

  Unmodified (clean) data page:
  If the page has previously been swapped to disk, just remove it

from memory
  Assuming that page's backing store on disk has not been overwritten

  If the page has never been swapped to disk, allocate new swap
space and write the page to it

  Exception: unmodified zero page – no need to write out to swap at
all!

  Modified (dirty) data page:
  If the page has previously been swapped to disk, write page out to

the swap space
  If the page has never been swapped to disk, allocate new swap

space and write the page to it 33

Physical Frame Allocation
  How do we allocate physical memory across multiple

processes?
  What if Process A needs to evict a page from Process B?
  How do we ensure fairness?
  How do we avoid having one process hogging the entire memory

of the system?
  Local replacement algorithms

  Per-process limit on the physical memory usage of each process
  When a process reaches its limit, it evicts pages from itself

  Global-replacement algorithms
  Physical size of processes can grow and shrink over time
  Allow processes to evict pages from other processes

  Note that one process' paging can impact performance of
entire system!
  One process that does a lot of paging will induce more disk I/O

34

Working Set
  A process's working set is the set of pages that it currently

“needs”
  Definition:

  WS(P, t, w) = the set of pages that process P accessed in the time
interval [t-w, t]

  “w” is usually counted in terms of number of page references
  A page is in WS if it was referenced in the last w page references

  Working set changes over the lifetime of the process
  Periods of high locality exhibit smaller working set
  Periods of low locality exhibit larger working set

  Basic idea: Give process enough memory for its working
set
  If WS is larger than physical memory allocated to process, it will

tend to swap
  If WS is smaller than memory allocated to process, it's wasteful
  This amount of memory grows and shrinks over time

35

Estimating the Working Set
  How do we determine the working set?
  Simple approach: modified clock algorithm

  Sweep the clock hand at fixed time intervals
  Record how many seconds since last page reference
  All pages referenced in last T seconds are in the working set

  Now that we know the working set, how do we allocate
memory?
  If working sets for all processes fit in physical memory, done!
  Otherwise, reduce memory allocation of larger processes

  Idea: Big processes will swap anyway, so let the small jobs run
unencumbered

  Very similar to shortest-job-first scheduling: give smaller processes
better chance of fitting in memory

  How do we decide the working set time limit T?
  If T is too large, very few processes will fit in memory
  If T is too small, system will spend more time swapping

  Which is better?
36

Page Fault Frequency
  Dynamically tune memory size of process based on # page

faults
  Monitor page fault rate for each process (faults per sec)
  If page fault rate above threshold, give process more

memory
  Should cause process to fault less
  Doesn't always work!

  Recall Belady's Anomaly
  If page fault rate below threshold, reduce memory

allocation
  What happens when everyone’s page fault rate is high?

37

Thrashing
  As system becomes more loaded, spends more of its time paging

  Eventually, no useful work gets done!

  System is overcommitted!
  If the system has too little memory, the page replacement algorithm

doesn't matter
  Solutions?

  Change scheduling priorities to “slow down” processes that are thrashing
  Identify process that are hogging the system and kill them?

  Is thrashing a problem on systems with only one user? 38

Number of processes

C
P

U
 u

til
iz

at
io

n
Thrashing

