[Paging: inside the OS

CS 241
February 8, 2012

[Paging

= Solve the external fragmentation problem by using fixed-
size chunks of virtual and physical memory
o Virtual memory unit called a page
o Physical memory unit called a frame (or sometimes page frame)

virtual memory
(for one process)

physical memory

age 0
PE9 frame O

age 1
P9 frame 1

age 2
PE0 frame 2

page 3
frame Y

page X 2][

[Application Perspective

Application believes it has a single, contiguous address space ranging from O
to 2P — 1 bytes

o Where P is the number of bits in a pointer (e.g., 32 bits)

In reality, virtual pages are scattered across physical memory
o This mapping is invisible to the program, and not even under it's control!

(Reserved for OS})
- Lots of separate processes
acl
Heap —
Uninitialized vars (resemeear o)
(BSS segment), _\
Initialized vars Stack
(data segment)y [
Code
(text segment) —
Heap
Uninitialized vars
(Reserved for OS) (BSS segment) |
Initialized vars
Stack — | (data segment)
Code
(text segment)
Heap

Uninitialized vars
(BSS segment)

Initialized vars
(data segment})

Code
(text segment)

[\

: CAN—
Physical RAM

Virtual addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address g
(VA) (PA) '
CPU MMU 7 -> 4:
4100 5
A :
6:
7:
8:
M-1
Data word

= Used in all modern servers, desktops, and laptops
= One of the great ideas in computer science

Enabling data structure

A page table is an array of page table entries (PTES)
that maps virtual pages to physical pages.

o Per-process kernel data structure in DRAM

Physical memory

Physical page (DRAM)
number or
Valid disk address / ://E ; PPO
PTEO| 0 null // e
. e VP4 PP 3
1 —
0 @
1 . _
0 null \)*\
0 e~ | >~ Disk
PTE7[1 o« "~ AN VP 1
Memory resident \\ NN vr2
page table S REW
(DRAM) . VP 3
\\\ VP 4
VP 6
VP 7

[Page hit

m Page hit: reference to VM word that is in physical
memory (DRAM cache hit)

Virtual address

Physical memory

Physical page (DRAM)
number or
Valid disk address / xi;
1 — VP 4
> 1 —
0 @
1 .
0 null \)'\ _
0 o . Disk
PTE7[1 o« "~ The VP 1
Memory resident ~~. _ A VP 2
page table S T
(DRAM) \\ VP 3
NN VP 4
VP 6
VP 7

PP O

PP 3

[Page fault

m Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)

Virtual address

Physical memory

Physical page (DRAM)
number or
Valid disk address / xi;
1 — VP 4
1 —
> 0 Q ——
1 .
0 null \)‘\ _
0 o . Disk
PTE7[1 o« "~ The VP 1
Memory resident ~~. _ A VP 2
page table S T
(DRAM) \\ VP 3
NN VP 4
VP 6
VP 7

PP O

PP 3

[Handling page faul

Page miss causes page fault (an exception)

Virtual address

PTE 7

Physical memory

PTEO] O

Physical page (DRAM)
number or
Valid disk address VP1
nu]
VP 7
. — VP 4
1 o—
0 L
1 o/(\\
0 null P ¢ |
0 - ~ S Disk
. ‘/'\\‘\ Thel VP 1
Memory resident ~~. _ NN w55
page table N S
(DRAM) . VP3
S~ VP 4
VP 6

VP 7

PP O

PP 3

[Handling page fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTE 7

Physical memory

PTEO] O

Physical page (DRAM)
number or
Valid disk address / xg;
nU” //
VP 7
1 — VP 4
1 —
0 e
1 .
0 D < .
0 o« . Disk
1 Ll i N VP 1
Memory resident ~~. _ A VP 2
page table N s
(DRAM) s VP3
\\\ VP 4
VP 6

VP 7

PP O

PP 3

[Handling page fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)
Loads new frame into freed slot

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or
Valid disk address / xg;
0 null //
VP 7
1 o~ _ VP 3
1 —
1 — |
0 .
0 null S A .
0 *\/‘\\\ DISk
1 o« AN I N VP 1
Memory resident \\ \\ VP 2
page table DN
(DRAM) \\ .~ VP 3
\\\ VP 4
VP 6

VP 7

PP O

PP 3

[Handling page fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)
Loads new frame into freed slot

Offending instruction is restarted: page hit!

Virtual address

Physical memory

Physical page (DRAM)
number or
. . VP 1
Valid disk address / o1
1 — VP 3
1 —
0 e
0 null S A .
0 *\/‘\\\ DISk
PTE7[1 LAl BN VP 1
Memory resident \\ \\ VP 2
page table RN
(DRAM) \\ .~ VP 3
NN VP 4
VP 6

VP 7

PP O

PP 3

[Page Table Entry
Typical PTE format (depends on CPU architecture!)

T 1 1 2 20

M|R |V prot physical page (frame) number

Various bits accessed by MMU on each page
access:

o Modify bit: Indicates whether a page is “dirty” (modified)

o Reference bit: Indicates whether a page has been accessed
(read or written)

o Valid bit: Whether the PTE represents a real memory mapping

o Protection bits: Specify if page is readable, writable, or
executable

o Physical page number: Physical location of page in RAM
Why is this 20 bits wide in the above example?

o

[Address translation with a P.T.

Page table
base register
(PTBR)

Page table address
for process

Virtual address
n-1

p p-1

Virtual page number (VPN)

Virtual page offset

Page table
Valid Physical page number (PPN)

Valid bit = 0:

page notin memory €
(page fault)

m'l v

p

p-1

(VPQ)

Physical page number (PPN)

\ 4
Physical page offset

Physical address

(PPQ)

[Address translation: page hit

PTEA >
PTE

VA
>
CPU MMU Cache/

] PA 5| Memory

Data

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

[Address translation: page fault]

Exception

j———————— === > Page fault handler

|

|

|

|

CPU Chip I L
PTEA 5 Victim page N
CPU L > MMU |€ PTE Cache/ _
Disk
Memory

< New page

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

[Question 1

Isn’t it slow to have to go to memory twice every time?

Yes, it would be... so, real MMUs don’t

[Speeding up translation with TLBW

Page table entries (PTEs) are cached in L1 like any other
memory word

o PTEs may be evicted by other data references
o PTE hit still requires a small L1 delay

Solution: Translation Lookaside Buffer (TLB)

o Small, dedicated, super-fast hardware cache of PTEs
in MMU

o Contains complete page table entries for small number
of pages

[TLB hit

CPU Chip

TLB
I PTE

VPN

\ 4
VA PA
> ->
CPU MMU Cache/
Memory
Data

A TLB hit eliminates a memory access

[TLB miss

CPU Chip
TLB

PTE

VPN

VA PTEA
>
CPU MMU Cache/

PA | Memory

Data

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

[Question 2

Isn’t the page table huge? How can it be stored in RAM’?

Yes, it would be... so, real page tables aren’t simple arrays

[Multi-Level Page Tables

_ Level 2
Suppose. Tables
o 4KB (2'?) page size, 64-bit address space, 8-byte

PTE
Problem: Level 1
o Would need a 32,000 TB page table! Table
o 264 %212 x 23 = 255 hyyteg =+
Common solution:
o Multi-level page tables

o Example: 2-level page table

Level 1 table: each PTE points to a page table
(always memory resident)

Level 2 table: each PTE points to a page

(paged in and out like any other data)

[2-level page table hierarchy

32 bit addresses, 4KB pages, 4-byte PTEs

PTEO [o
PTE 1
PTE 2 (null) PTE 1023
PTE 3 (null)
PTE 4 (null) PTE O
PTE 5 (null)
PTE 6 (null) PTE 1023
PTE 7 (null)
PTE 8 >
1023 null
(1K - 9) PTEs
null PTEs PTE 1023

/

VPO

VP 1023

VP 1024

VP 2047

Gap

1023
unallocated

pages

VP 9215

AN

> 2K allocated VM pages
for code and data

> 6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

1

[Addr. translation with k-level PT

n-1

VIRTUAL ADDRESS

m-1

p-1 0
» VPN 1 » VPN2 » VPN K VPO
%{_/
Level 1 Level 2 Level k
page table page table R page table
T > PPN

|

p-1 0

PPN

PPO

PHYSICAL ADDRESS

[Multilevel Page Tables

With two levels of page tables, how big is each table?

o Say we allocate 10 bits to the primary page, 10 bits to the secondary
page, 12 bits to the page offset

o Primary page table is then 210 * 4 bytes per PTE == 4 KB
o Secondary page table is also 4 KB
o Hey ... that's exactly the size of a page on most systems ... cool

What happens on a page fault?
o MMU looks up index in primary page table to get secondary page table

o MMU tries to access secondary page table
May result in another page fault to load the secondary table!

o MMU looks up index in secondary page table to get physical frame #
o CPU can then access physical memory address

Issues

o Page translation has very high overhead
Up to three memory accesses plus two disk 1/0Os!!

o TLB usage is clearly very important

[Problem (from Tanenbaum)

Suppose:

o 32-bit address

o Two-level page table

o Virtual addresses split into a 9-bit top-level page table field, an 11-
bit second-level page table field, and an offset

Question: How large are the pages and how many are

there in the address space?

[Problem (from Tanenbaum)

Suppose:
o 32-bit address
o Two-level page table
o Virtual addresses split into a 9-bit top-level page table field, an 11-
bit second-level page table field, and an offset
Question: How large are the pages and how many are
there in the address space?
o Offset is 12 bits
o Page size 272 bytes = 4KB
o # Virtual pages = (232 / 212) = 220
o Note: driven by number of bits in offset
Independent of size of top and 2"4 level

[Question 3

Is there any other super slick stuff can | do with page
tables?

Yes!

[Paging as a tool for protection

Extend PTEs with permission bits

Page fault handler checks these before remapping
If violated, send process SIGSEGV (segmentation fault)

O

VP O:
VP 1:
VP 2:

VP O:
VP 1:
VP 2:

PP 2

PP 4

PP 6

PP 8

PP 9

SUP READ WRITE Address
No Yes No PP 6
No Yes Yes PP 4
Yes Yes Yes PP 2

.

.

.
SUP READ WRITE Address
No Yes No PP 9
Yes Yes Yes PP 6
No Yes Yes PP 11

PP 11

[VM as a tool for sharing

Process 1
virtual memory

Physical
memory

Shared
object

Process 2
virtual memory

Process 1
maps the
shared object.

[VM as a tool for sharing

Process 1 Physical Process 2
virtual memory memory virtual memory
Shared
object

m Process 2
maps the
shared object.

m Notice how the
virtual
addresses can
be different.

[Protection + sharing example

fork () creates exact copy of a process
o Lots more on this next week...

When we fork a new process, does it make sense to make
a copy of all of its memory?

o Why or why not?

What if the child process doesn't end up touching most of
the memory the parent was using?
o exec () replaces a process with a new one

o Extreme example and common case: What happens if a process
does an exec () immediately after fork()?

.

[Copy-on-write

|dea: Give the child process access to the same memory,
but don't let it write to any of the pages directly!

o 1) Parent forks a child process

o 2) Child gets a copy of the parent's page tables
They point to the same physical frames!!!

Parent

(Reserved for OS)

Stack

v
A

Heap B

Parent's
page tbl

Uninitialized
vars

Initialized vars

N

Child's
page tbl

Child

(Reserved for OS)

Stack

v
A

Heap [©

*4—'

7

Uninitialized
vars

Initialized vars

Code

Code

N 1

[Copy-on-write

All pages (both parent and child) marked read-only

o Why?

Parent

(Reserved for OS)

Stack

v
A

Heap B

Parent's
page tbl

Uninitialized
vars

Initialized vars

Code

N

7

Child

Child's
page tbl

(Reserved for OS)

Stack

v
A

III!’III<---"

Heap [©

Uninitialized
vars

Initialized vars

Code

[Copy-on-write

What happens when the child reads the page?

o Just accesses same memory as parent niiiiiice

What happens when the child writes the page?

o Protection fault occurs (page is read-only!)
o OS copies the page and maps it R/W into the child's addr space

Parent

(Reserved for OS)

Stack

v
A

Heap B

Parent's
page tbl

Uninitialized
vars

Initialized vars

Code

N

7

Child

Child's
page tbl

(Reserved for OS)

Stack

v
A

*4—'

Heap [©

Uninitialized
vars

Initialized vars

Code

s |

[Copy-on-write

What happens when the child reads the page?

o Just accesses same memory as parent niiiiiice

What happens when the child writes the page?

o Protection fault occurs (page is read-only!)
o OS copies the page and maps it R/W into the child's addr space

Parent

(Reserved for OS)

Stack

v
A

Heap B

Parent's
page tbl

Uninitialized
vars

Initialized vars

Code

N

N

/
Copy pagw

Child

Child's
page tbl

(Reserved for OS)

Stack

v
A

*4—'

Heap [©

Uninitialized
vars

Initialized vars

Code

s [l

[Copy-on-write

What happens when the child reads the page?

o Just accesses same memory as parent niiiiiice

What happens when the child writes the page?

o Protection fault occurs (page is read-only!)
o OS copies the page and maps it R/W into the child's addr space

Parent

(Reserved for OS)

Stack

v
A

Heap B

Parent's
page tbl

Uninitialized
vars

Initialized vars

Code

N

Child's
page tbl

Child

(Reserved for OS)

Stack

v
A

Heap [©

Uninitialized
vars

Initialized vars

Code

s |

[Another sharing example

Can also share code segment

Shell #1

(Reserved for OS)

v
4

Shell #2

Heap

Uninitialized
vars

(Reserved for OS)

Initialized vars

Stack

Code

v
4

Same page
table mapping!

Physical Memory

Code for shell

Heap

Uninitialized
vars

Initialized vars

Code

[Benefits of sharing pages

= How much memory savings do we get from sharing pages across
identical processes?

o Alot! Use the “top” command...

N ™ M

lerminal — top — 88x26

Processes: 638 total, 2 running, 1 stuck, 65 sleeping... 246 threads 13:17:38 5
Load Avg: 8.75, 8.53, 8.52 CPU usage: 7.7% user, 17.9% sys, 74.4% idle
SharedLibs: num = 223, resident = 33.3M code, 4.61M data, 4.88M LinkEdit
MemRegions: num = 17413, resident = 2688M + 11.6M private, 546M shared
PhysMem: 618M wired, 261M active, 136M inactive, 16818M used, 13.9M free
YM: 9.79G + 158M 635052{(61) pageins, 455424(8) pageouts
PID COMMAND #CPU TIME #TH #PRTS #MREGS RPRVT RSHRD RSIZE VSIZE
3784 Grab 5.8% B@:88.51 3 126 159 2.23M+ 7.25M+ 16.8M+ 216M+
3781 less a.0% 08:08.02 1 13 17 148K 384K 484K 26.7M
3778 sh a.0% @:08.08 1 8 16 88.8K 688K 364K 27.1M
3777 sh a.0% 9@:08.08 1 13 16 65.8K 688K 544K 27.1M
3776 man g.0% 8:08.81 1 13 16 184K 264K 468K 26.7M
3752 bash g.0% 9:08.81 1 14 16 228K 696K 816K 27.1M
3751 login a.0% @:88.81 1 16 48 172K 380K 636K 26.9M
3748 top 12.8% 8:23.16 1 25 28 74K 388K 1.14M 27.8M
3725 bash g.0% @8:08.82 1 14 16 228K 696K 812K 27.1M
3724 login g.0% 9:08.81 1 16 48 172K 388K 636K 26.9M
3722 Terminal a.2% B8:82.31 6 92 148 2.25M 11.1M 18.3M 218M
3719 WinAppHelp 8.8% @:88.85 1 57 95 716K 4.18M 3.88M 198M
3713 mdimport 8.0% 0:08.98 4 68 119 1.59M 3.16M 4.64M 57.5M
3675 iTunes 3.5% 6:51.76 9 193 378 7.12M 12.1M+ 18.2M 263M
3678 Address Bo @.8% 8:82.55 1 92 179 2.21M 5.56M 15.2M 216M "/
3659 Mail a.8% B8:59.65 &8 172 415 25.3M 18.9M+ 27.2M 258M L
38584 Skype B.7% 17:28.32 18 248 452 23.9M §.65M+ 28.8M 364M v
655 vfstool g.0% ©@:008.87 2 14 29 128K 388K 266K 32.1M D

[Summary

= Paging implementation

O

O

O

Basics: get page off disk if necessary (page fault) and then map
virtual to physical address

Problem: Mapping requires extra memory access (solution?)
Problem: Page table can get huge (solution?)

= Paging enables flexible use of memory

O

O
O

Protection

Sharing (e.g., copy-on-write defers writes as long as possible)
Caching

= Q: How do | choose which page to evict when swapping?

