
CS 241
February 3, 2012

Copyright ©: University of Illinois CS 241 Staff 1

Heap allocation: Malloc

Announcements

2

Review: Why is malloc not easy?
  Must be fast

  Can only perform relatively simple computation
  Should avoid too many system calls (sbrk())

  Must be memory-efficient
  Can’t predict what or when the user will malloc/free
  Even if we knew sizes in advance, packing the requests

into memory optimally is NP-complete, i.e., a provably
hard problem!

  Must work!
  Easy to make mistakes with pointer & bit manipulation

3

Implementation Issues

  How do we know how much memory to free just given a
pointer?

  How do we keep track of the free blocks?

  What do we do with the extra space when allocating a
memory block that is smaller than the free block it is placed
in?

  How do we pick which free block to use for allocation?

4

Knowing how much to free
  Standard method

  Keep the length of the block in the header preceding
the block

  Requires an extra word for every allocated block

5

Keeping Track of Free Blocks
  One of the biggest jobs of an allocator is knowing

where the free memory is
  The allocator's approach to this problem affects:

  Throughput – time to complete a malloc() or free()
  Space utilization – amount of extra metadata used to

track location of free memory
  There are many approaches to free space

management
  Next, we will talk about one: Implicit free lists.

6

  For each block we need both size and allocation status
  Could store this information in two words: wasteful!

  Standard trick
  If blocks are aligned, low-order address bits are always 0
  Why store an always-0 bit? Use it as allocated/free flag!
  When reading size word, must mask out this bit

Size	

1	
 word	

Format	
 of	

allocated	
 and	

free	
 blocks	

Payload	

a	
 =	
 1:	
 Allocated	
 block	
 	
 	

a	
 =	
 0:	
 Free	
 block	

	

Size:	
 block	
 size	

	

Payload:	
 applica8on	
 data	

(allocated	
 blocks	
 only)	

	

a	

Op8onal	

padding	

Implicit free list

Implicit free list

  No explicit structure tracking location of free/allocated
blocks.
  Rather, the size word (and allocated bit) in each block form an

implicit “block list”

  How do we find a free block in the heap?
  Start scanning from the beginning of the heap.
  Traverse each block until (a) we find a free block and (b) the block

is large enough to handle the request.
  This is called the first fit strategy.

  Could also use next fit, best fit, etc

8

Implicit list: Allocating a Block
  Splitting free blocks

  Since allocated space might be smaller than free
space, we may need to split the free block that we're
allocating within

9

Implicit List: Freeing a Block
  Simplest implementation:

  Only need to clear allocated flag
  void free_block(ptr p) { *p = *p & ~1; }!

  But can lead to “false fragmentation”

  There’s enough free space, but allocator
won’t find it!

10

free(p)

16 8 16 8

p

16

16 16 8 16 8

malloc(20)
Oops!

Implicit List: Coalescing
  Join (coalesce) with next and previous block

if they are free
  Coalescing with next block

  But how do we coalesce with previous
block?

11

16 8 16 8

free(p) p

16 16 8

16

8 24

Implicit Lists: Summary
  Implementation: very simple
  Allocate: linear-time worst case
  Free: constant-time worst case—even with

coalescing
  Memory usage: will depend on placement policy

  First, next, or best fit

  Not used in practice for malloc/free because of
linear-time allocate, but used in some special-
purpose applications

  However, concepts of splitting and boundary tag
coalescing are general to all allocators

13

Alternative: Explicit Free Lists
  Linked list among free blocks
  Use data space for link pointers

  Typically doubly linked
  Still need boundary tags for coalescing

  Links aren’t necessarily in same order as
blocks! Advantage?

14

16 16 16 16 24 24 16 16 16 16

Forward links

Back links

A B

C

Freeing with Explicit Free Lists
  Insertion policy: Where in free list to put

newly freed block?
  LIFO (last-in-first-out) policy

  Insert freed block at beginning of free list
  Pro: simple, and constant-time
  Con: studies suggest fragmentation is worse than

address-ordered
  Address-ordered policy

  Insert freed blocks so list is always in address order
  i.e. addr(pred) < addr(curr) < addr(succ)

  Con: requires search (using boundary tags); slow!
  Pro: studies suggest fragmentation is better than

LIFO 15

Summary: tracking free blocks
  Method 1: Implicit list using lengths -- links

all blocks

  Method 2: Explicit list among the free blocks
using pointers within the free blocks

  Method 3: Segregated free list
  Different free lists for different size classes
  We’ll talk about this one next

16

20 16 8 24

20 16 8 24

Segregated free lists
  Each size class has its own collection of

blocks

  Often separate size class for every small size (8, 12, 16, …)
  For larger, typically have size class for each power of 2

 What is the point of having separate lists?
17

4-8

12

16

20-32

36-64

Buddy Allocators
  Special case of segregated free lists

  Basic idea:
  Limited to power-of-two sizes
  Can only coalesce with "buddy", who is other half of

next-higher power of two

  Clever use of low address bits to find buddies

  Problem: large powers of two result in large internal
fragmentation (e.g., what if you want to allocate 65537
bytes?)

18

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 19

128 Free

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 20

128 Free

Process A requests 16

64 Free 64 Free

32 Free 32 Free

16 A 16 Free 32 Free

64 Free

64 Free

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 21

128 Free

Process B requests 32

16 A 16 Free 32 Free 64 Free 32 B

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 22

128 Free

Process C requests 8

16 A 16 Free 32 B 64 Free

16 A 8
C 32 B 64 Free 8

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 23

Process A exits

16 Free 8
C 32 B 64 Free 8

Buddy System Example

  Advantages, disadvantages?
  Advantage: Low external fragmentation
  Disadvantage: Internal fragmentation when not 2n-

sized request

Copyright ©: University of Illinois CS 241 Staff 24

Process C exits

16 Free 8 32 B 64 Free 8

16 Free 32 B 64 Free 16 Free

32 B 64 Free 32 Free

So what should I do for MP2?
  Designs sketched here are reasonable
  Many other possible designs
  Implement anything you want!

25

