
CS 241
February 3, 2012

Copyright ©: University of Illinois CS 241 Staff 1

Malloc

Announcements
  There is only one announcement today

2

Review: Paging
  OS solves the external fragmentation problem by using

fixed-size chunks of virtual and physical memory
  Virtual memory unit called a page
  Physical memory unit called a frame (or sometimes page frame)

3

frame 0

frame 1

frame 2

frame Y

physical memory

…

page 0

page 1

page 2

page X

virtual memory
(for one process)‏

…

page 3

...

...

Definitions
  External fragmentation

  Unused chunks of memory between allocated chunks
  Can’t use for large contiguous allocations

  Internal fragmentation
  Unused memory within allocated regions
  Because we allocated more than the requested size

  How does paging affect these?
  Zero external fragmentation: all requests and fragments

are the same size
  Some internal fragmentation: requested size gets

rounded up to next integer multiple of page size
4

Review: Advantages of Paging
  Simplifies physical memory management

  OS maintains a free list of physical page frames
  To allocate a physical page, just remove an entry from this list

  No external fragmentation!
  Virtual pages from different processes can be interspersed

arbitrarily in physical memory
  No need to allocate pages in a contiguous fashion

  Allocation of memory can be performed at a (relatively) fine
granularity
  Only allocate physical memory to those parts of the address space

that require it
  Can swap unused pages out to disk when physical memory is

running low
  Idle programs won't use up a lot of memory (even if their address

space is huge!)
5

Is paging enough?

6

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Physical RAM

MMU

How do we allocate memory in here?

Memory allocation w/in a process
  What happens when you declare a variable?

  Allocating a page for every variable wouldn’t be efficient
  Allocations within a process are much smaller
  Need to allocate on a finer granularity

  Solution (stack): stack data structure (duh)
  Function calls follow LIFO semantics
  So we can use a stack data structure to represent the

process’s stack – no fragmentation!

  Solution (heap): malloc
  This is a much harder problem
  Need to deal with fragmentation

7

Challenges of heap allocation
  Can’t control number or size of requested blocks
  Must respond immediately to all allocation requests

  i.e., can’t reorder or buffer requests

  Must allocate blocks from free memory
  Must align blocks so they satisfy all alignment

requirements
  8 byte alignment for GNU malloc (libc malloc) on Linux boxes

  Can only manipulate and modify free memory
  Can’t move the allocated blocks once they are allocated

  i.e., compaction is not allowed (why not?)

9

Goal 1: Speed
  Want our memory allocator to be fast!

  Minimize the overhead of both allocation and deallocation
operations.

  Maximize throughput: number of completed alloc or free
requests per unit time
  E.g., if 5,000 malloc calls and 5,000 free calls in 10

seconds, throughput is 1,000 operations/second.
  A fast allocator may not be efficient in terms of memory

utilization
  Faster allocators tend to be “sloppier”
  E.g., don’t look through every free block to find the

perfect fit

10

Goal 2: Memory Utilization

11

  Allocators usually waste some memory
  Extra metadata or internal structures

used by the allocator itself
  (example: keeping track of where

free memory is located)
  Chunks of heap memory that are

unallocated (fragments)
  Memory utilization =

  The total amount of memory
allocated to the application divided
by the total heap size

  Ideal: utilization = 100%
  In practice: try to get close to 100%

Fragmentation
  Poor memory utilization caused by fragmentation

  internal fragmentation
  external fragmentation

  We saw: OS encounters fragmentation when allocating
memory to processes

  Now: malloc encounters fragmentation when allocating
memory to applications

  For a given block, internal fragmentation occurs if
payload is smaller than block size

  Caused by

  Overhead of maintaining heap data structures
  Padding for alignment purposes
  Explicit policy decisions

(e.g., to return a big block to satisfy a small request)

Payload	
 Internal	
 	

fragmenta/on	

Block	

Internal	
 	

fragmenta/on	

Internal fragmentation

External Fragmentation
  Occurs when there is enough aggregate heap memory, but

no single free block is large enough

  Depends on the pattern of future requests
  Thus, difficult to plan for

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops!	
 (what	
 would	
 happen	
 now?)	

Conflicting performance goals
  Good throughput and good utilization are difficult to

achieve simultaneously

  A fast allocator may not be efficient in terms of memory
utilization
  Faster allocators tend to be “sloppier” with their memory

usage.

  Likewise, a space-efficient allocator may not be very fast
  To keep track of memory waste (i.e., tracking fragments), the

allocation operations generally take longer time

  Trick is to balance these two conflicting goals

15

Implementation Issues

  How do we know how much memory to free just given a
pointer?

  How do we keep track of the free blocks?

  What do we do with the extra space when allocating a
memory block that is smaller than the free block it is placed
in?

  How do we pick which free block to use for allocation?

16

Knowing how much to free
  Standard method

  Keep the length of the block in the header preceding
the block

  Requires an extra word for every allocated block

17

Keeping Track of Free Blocks
  One of the biggest jobs of an allocator is knowing

where the free memory is
  The allocator's approach to this problem affects:

  Throughput – time to complete a malloc() or free()
  Space utilization – amount of extra metadata used to

track location of free memory
  There are many approaches to free space

management
  Next, we will talk about one: Implicit free lists.

18

Implicit Free List
  Idea: Each block contains a header with some extra information.
  Allocated bit indicates whether block is allocated or free.
  Size field indicates entire size of block (including the header)
  Trick: Allocation bit is just the low-order bit of the size word
  For this lecture, let's assume the header size is 1 byte.
  Makes the pictures that I'll show later on easier to understand.
  This means the block size is only 7 bits, so max. block size is 127

bytes (2^7-1).
  Clearly a real implementation would want to use a larger header (e.g.,

4 bytes).

19

  For each block we need both size and allocation status
  Could store this information in two words: wasteful!

  Standard trick
  If blocks are aligned, low-order address bits are always 0
  Why store an always-0 bit? Use it as allocated/free flag!
  When reading size word, must mask out this bit

Size	

1	
 word	

Format	
 of	

allocated	
 and	

free	
 blocks	

Payload	

a	
 =	
 1:	
 Allocated	
 block	
 	
 	

a	
 =	
 0:	
 Free	
 block	

	

Size:	
 block	
 size	

	

Payload:	
 applica/on	
 data	

(allocated	
 blocks	
 only)	

	

a	

Op/onal	

padding	

Implicit free list

Implicit free list

  No explicit structure tracking location of free/allocated
blocks.
  Rather, the size word (and allocated bit) in each block form an

implicit “block list”

  How do we find a free block in the heap?
  Start scanning from the beginning of the heap.
  Traverse each block until (a) we find a free block and (b)

the block is large enough to handle the request.
  This is called the first fit strategy.

  Could also use next fit, best fit, etc
21

Implicit list: Allocating a Block
  Splitting free blocks

  Since allocated space might be smaller than free
space, we may need to split the free block that we're
allocating within

22

Implicit List: Freeing a Block
  Simplest implementation:

  Only need to clear allocated flag
  void free_block(ptr p) { *p = *p & ~1; }!

  But can lead to “false fragmentation”

  There’s enough free space, but allocator
won’t find it!

23

free(p)

16 8 16 8

p

16

16 16 8 16 8

malloc(20)
Oops!

Implicit List: Coalescing
  Join (coalesce) with next and previous block

if they are free
  Coalescing with next block

  But how do we coalesce with previous
block?

24

16 8 16 8

free(p) p

16 16 8

16

8 24

Implicit Lists: Summary
  Implementation: very simple
  Allocate: linear-time worst case
  Free: constant-time worst case—even with

coalescing
  Memory usage: will depend on placement policy

  First, next, or best fit

  Not used in practice for malloc/free because of
linear-time allocate, but used in some special-
purpose applications

  However, concepts of splitting and boundary tag
coalescing are general to all allocators

26

Alternative: Explicit Free Lists
  Use data space for link pointers

  Typically doubly linked
  Still need boundary tags for coalescing

  Links aren’t necessarily in same order as
blocks! Advantage?

27

16 16 16 16 24 24 16 16 16 16

Forward links

Back links

A B

C

Freeing with Explicit Free Lists
  Insertion policy: Where in free list to put

newly freed block?
  LIFO (last-in-first-out) policy

  Insert freed block at beginning of free list
  Pro: simple, and constant-time
  Con: studies suggest fragmentation is worse than

address-ordered
  Address-ordered policy

  Insert freed blocks so list is always in address order
  i.e. addr(pred) < addr(curr) < addr(succ)

  Con: requires search (using boundary tags)
  Pro: studies suggest fragmentation is better than

LIFO 28

Keeping Track of Free Blocks
  Method 1: Implicit list using lengths -- links

all blocks

  Method 2: Explicit list among the free blocks
using pointers within the free blocks

  Method 3: Segregated free list
  Different free lists for different size classes
  We’ll talk about this one next

29

20 16 8 24

20 16 8 24

Segregated Storage
  Each size class has its own collection of

blocks

  Often separate size class for every small size (8, 12, 16, …)
  For larger, typically have size class for each power of 2

30

4-8

12

16

20-32

36-64

Buddy Allocators
  Special case of segregated fits
  Basic idea:

  Limited to power-of-two sizes
  Can only coalesce with "buddy", who is other

half of next-higher power of two
  Clever use of low address bits to find

buddies
  Problem: large powers of two result in large

internal fragmentation (e.g., what if you
want to allocate 65537 bytes?)

31

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 32

128 Free

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 33

128 Free

Process A requests 16

64 Free 64 Free

32 Free 32 Free

16 A 16 Free 32 Free

64 Free

64 Free

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 34

128 Free

Process B requests 32

16 A 16 Free 32 Free 64 Free 32 B

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 35

128 Free

Process C requests 8

16 A 16 Free 32 B 64 Free

16 A 8
C 32 B 64 Free 8

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 36

Process A exits

16 Free 8
C 32 B 64 Free 8

Buddy System Example

  Advantages, disadvantages?
  Advantage: Minimizes external fragmentation
  Disadvantage: Internal fragmentation when not 2n-

sized request

Copyright ©: University of Illinois CS 241 Staff 37

Process C exits

16 Free 8 32 B 64 Free 8

16 Free 32 B 64 Free 16 Free

32 B 64 Free 32 Free

So what should I do for MP2?
  Designs sketched here are reasonable
  Many other possible designs
  Implement anything you want!

38

