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Memory 



Announcements 
  MP2 released 
  Brighten’s office hours this week 

  Wednesday 3-4 
  Thursday 3-4 

  Talk today: Nick Feamster, Georgia Tech 
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“The Battle for Control of 
Online Communications” 
 
4:00 p.m. 
2405 Siebel Center 
 



Recap: Virtual Addresses 
 A virtual address is a memory address that a process uses 

to access its own memory 
 Virtual address ≠ actual physical RAM address 
 When a process accesses a virtual address, the MMU hardware translates 

the virtual address into a physical address 
 The OS determines the mapping from virtual address to physical address 

 Benefit: Isolation 
 Virtual addresses in one process refer to different physical memory than 

virtual addresses in another 
 Exception: shared memory regions between processes (discussed later) 

 Benefit: Illusion of larger memory space  
 Can store unused parts of virtual memory on disk temporarily 

 Benefit: Relocation 
 A program does not need to know which physical addresses it will 

use when it’s run 
 Can even change physical location while program is running 
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Mapping virtual to physical addresses 
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How does this thing work?? 



MMU and TLB 
  Memory Management Unit (MMU) 

  Hardware that translates a virtual address to a physical address 
  Each memory reference is passed through the MMU 
  Translate a virtual address to a physical address 

  Lots of ways of doing this! 

  Translation Lookaside Buffer (TLB) 
  Cache for MMU virtual-to-physical address translations 
  Just an optimization – but an important one! 
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Translating virtual to physical 
  Can do it almost any way we like 
  But, some ways are better than others… 

  Strawman solution from last time:          
base and bound 
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Base and bound 

if (virt addr > bound) 
    trap to kernel 
else 
    phys addr = virt addr + base 
 

  Process has the illusion of 
running on its own 
dedicated machine with 
memory [0,bound) 

  Provides protection from 
other processes also 
currently in memory 
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Base and bound 
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Base: start of the process’s memory partition 
Bound: length of the process’s memory partition 



Base and bounds 

  Problem: Process needs more 
memory over time 
  Stack grows as functions are called 
  Heap grows upon request (malloc) 
  Processes start and end 

  How does the kernel handle the 
address space growing? 
  You are the OS designer 
  Design strategy for allowing 

processes to grow 
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But wait, didn’t we solve this? 

  Problem: wasted space 
  And must have virtual mem ≤ phys mem 
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Another attempt: segmentation 
  Segment 

  Region of contiguous memory 
  Segmentation 

  Generalized base and bounds with support for 
multiple segments at once 
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Segmentation 
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segment 



Segmentation 

  Segments are specified 
many different ways 

  Advantages over base 
and bounds? 

  Protection 
  Different segments can 

have different protections 

  Flexibility 
  Can separately grow both 

a stack and heap 
  Enables sharing of code 

and other segments if 
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Segmentation 

  Segments are specified 
many different ways 

  What are the advantages 
over base and bounds? 

  What must be changed on 
context switch? 
  Contents of your 

segmentation table 
  A pointer to the table, expose 

caching semantics to the 
software (what x86 does) 
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Recap: mapping virtual memory 
  Base & bounds 

  Problem: growth is inflexible 
  Problem: external fragmentation 

  As jobs run and complete, holes left in physical memory 

 
  Segments 

  Resize pieces based on process needs 
  Problem: external fragmentation 
  Note: x86 used to support segmentation, now 

effectively deprecated with x86-64 

  Modern approach: Paging 
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Paging 



Paging 
  Solve the external fragmentation problem by using fixed-

size chunks of virtual and physical memory 
  Virtual memory unit called a page 
  Physical memory unit called a frame (or sometimes page frame) 
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Application Perspective 
  Application believes it has a single, contiguous address space ranging from 0 

to 2P – 1 bytes 
  Where P is the number of bits in a pointer (e.g., 32 bits) 

  In reality, virtual pages are scattered across physical memory 
  This mapping is invisible to the program, and not even under it's control! 
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Translation process 
  Virtual-to-physical address translation performed by MMU 

  Virtual address is broken into a virtual page number and an offset 
  Mapping from virtual page to physical frame provided by a page 

table (which is stored in memory) 

0xdeadbeef = 0xdeadb 0xeef 
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Translation process 
if (virtual page is invalid or non-resident or protected) 
    trap to OS fault handler 
else 
    physical frame # = pageTable[virtpage#].physPageNum 

  Each virtual page can be in physical memory or swapped 
out to disk (called “paged out” or just “paged”) 

  What must change on a context switch? 
  Could copy entire contents of table, but this will be slow 
  Instead use an extra layer of indirection: Keep pointer to current 

page table and just change pointer 
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Where is the page table? 
  Page Tables store the virtual-to-physical address mappings. 
  Where are they located? In memory! 
  OK, then. How does the MMU access them?  

  The MMU has a special register called the page table base pointer. 
  This points to the physical memory address of the top of the page table 

for the currently-running process. 
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Page Faults 
  What happens when a program accesses a virtual page 

that is not mapped into any physical page? 
  Hardware triggers a page fault 

  Page fault handler 
  Find any available free physical page 
  If none, evict some resident page to disk 
  Allocate a free physical page 
  Load the faulted virtual page to the prepared physical page 
  Modify the page table 
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Advantages of Paging 
  Simplifies physical memory management 

  OS maintains a free list of physical page frames 
  To allocate a physical page, just remove an entry from this list 

  No external fragmentation! 
  Virtual pages from different processes can be interspersed in 

physical memory 
  No need to allocate pages in a contiguous fashion 

  Allocation of memory can be performed at a (relatively) fine 
granularity 
  Only allocate physical memory to those parts of the address space 

that require it 
  Can swap unused pages out to disk when physical memory is 

running low 
  Idle programs won't use up a lot of memory (even if their address 

space is huge!) 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Paging Example 
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Is paging enough? 
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Memory allocation w/in a process 
  What happens when you declare a variable? 

  Allocating a page for every variable wouldn’t be efficient 
  Allocations within a process are much smaller 
  Need to allocate on a finer granularity 

  Solution (stack): stack data structure (duh) 
  Function calls follow LIFO semantics 
  So we can use a stack data structure to represent the 

process’s stack – no fragmentation! 

  Solution (heap): malloc 
  This is a much harder problem 
  Need to deal with fragmentation 

33 



MP2: malloc 
  Introduction by Wade 
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