
CS 241
February 1, 2012

Slides adapted in part from material by
Matt Welsh, Harvard U.

1

Memory

Announcements
  MP2 released
  Brighten’s office hours this week

  Wednesday 3-4
  Thursday 3-4

  Talk today: Nick Feamster, Georgia Tech

2

“The Battle for Control of
Online Communications”

4:00 p.m.
2405 Siebel Center

Recap: Virtual Addresses
 A virtual address is a memory address that a process uses

to access its own memory
 Virtual address ≠ actual physical RAM address
 When a process accesses a virtual address, the MMU hardware translates

the virtual address into a physical address
 The OS determines the mapping from virtual address to physical address

 Benefit: Isolation
 Virtual addresses in one process refer to different physical memory than

virtual addresses in another
 Exception: shared memory regions between processes (discussed later)

 Benefit: Illusion of larger memory space
 Can store unused parts of virtual memory on disk temporarily

 Benefit: Relocation
 A program does not need to know which physical addresses it will

use when it’s run
 Can even change physical location while program is running

3

Mapping virtual to physical addresses

4

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Physical RAM

MMU

How does this thing work??

MMU and TLB
  Memory Management Unit (MMU)

  Hardware that translates a virtual address to a physical address
  Each memory reference is passed through the MMU
  Translate a virtual address to a physical address

  Lots of ways of doing this!

  Translation Lookaside Buffer (TLB)
  Cache for MMU virtual-to-physical address translations
  Just an optimization – but an important one!

5

CPU MMU Virtual
address

Physical
address Memory

TLB

Cache of translations

Translation
mapping

Translating virtual to physical
  Can do it almost any way we like
  But, some ways are better than others…

  Strawman solution from last time:
base and bound

6

Base and bound

if (virt addr > bound)
 trap to kernel
else
 phys addr = virt addr + base

  Process has the illusion of
running on its own
dedicated machine with
memory [0,bound)

  Provides protection from
other processes also
currently in memory

Copyright ©: University of Illinois CS 241 Staff 7

physical
memory

physical
memory
size

base + bound

base
bound

virtual
memory

0 0

Base and bound

Copyright ©: University of Illinois CS 241 Staff 8

Memory

Bounds Register Base Register

CPU
Address < +

Memory
Address

MA

Logical
Address LA

Physical
Address

PA

Fault

Base Address

Bound
Address

MA+BA

Base
Address

BA

Base: start of the process’s memory partition
Bound: length of the process’s memory partition

Base and bounds

  Problem: Process needs more
memory over time
  Stack grows as functions are called
  Heap grows upon request (malloc)
  Processes start and end

  How does the kernel handle the
address space growing?
  You are the OS designer
  Design strategy for allowing

processes to grow

Copyright ©: University of Illinois CS 241 Staff 9

physical
memory

base + bound

base
bound

virtual
memory

0 0

Process 1

Process 2

But wait, didn’t we solve this?

  Problem: wasted space
  And must have virtual mem ≤ phys mem

10

Code segment

Data segment

Heap

Stack

fixed size

fixed size

grows
dynamically

grows
dynamically

physical
memory

base + bound

base

Another attempt: segmentation
  Segment

  Region of contiguous memory
  Segmentation

  Generalized base and bounds with support for
multiple segments at once

Copyright ©: University of Illinois CS 241 Staff 11

Segmentation

Copyright ©: University of Illinois CS 241 Staff 12

code

stack

data code

stack

data

physical
memory

virtual
memory
segment 3

Virtual
memory
segment 1

Virtual
memory
segment 0

0

0

0

0

fff

4ff

6ff
0

4ff

2000

2fff

4000

46ff

Seg # Base Bound Description

0 4000 700 Code
segment

1 0 500 Data
segment

2 Unused

3 2000 1000 Stack
segment

Segmentation

  Segments are specified
many different ways

  Advantages over base
and bounds?

  Protection
  Different segments can

have different protections

  Flexibility
  Can separately grow both

a stack and heap
  Enables sharing of code

and other segments if
needed Copyright ©: University of Illinois CS 241 Staff 13

code

stack

data code

stack

data

physical
memory

virtual
memory
segment 3

Virtual
memory
segment 1

Virtual
memory
segment 0

0

0

0

0

fff

4ff

6ff
0

4ff

2000

2fff

4000

46ff

Segmentation

  Segments are specified
many different ways

  What are the advantages
over base and bounds?

  What must be changed on
context switch?
  Contents of your

segmentation table
  A pointer to the table, expose

caching semantics to the
software (what x86 does)

Copyright ©: University of Illinois CS 241 Staff 14

code

stack

data code

stack

data

physical
memory

virtual
memory
segment 3

Virtual
memory
segment 1

Virtual
memory
segment 0

0

0

0

0

fff

4ff

6ff
0

4ff

2000

2fff

4000

46ff

Recap: mapping virtual memory
  Base & bounds

  Problem: growth is inflexible
  Problem: external fragmentation

  As jobs run and complete, holes left in physical memory

  Segments

  Resize pieces based on process needs
  Problem: external fragmentation
  Note: x86 used to support segmentation, now

effectively deprecated with x86-64

  Modern approach: Paging

15

Copyright ©: University of Illinois CS 241 Staff 16

Paging

Paging
  Solve the external fragmentation problem by using fixed-

size chunks of virtual and physical memory
  Virtual memory unit called a page
  Physical memory unit called a frame (or sometimes page frame)

17

frame 0

frame 1

frame 2

frame Y

physical memory

…

page 0

page 1

page 2

page X

virtual memory
(for one process)‏

…

page 3

...

...

Application Perspective
  Application believes it has a single, contiguous address space ranging from 0

to 2P – 1 bytes
  Where P is the number of bits in a pointer (e.g., 32 bits)

  In reality, virtual pages are scattered across physical memory
  This mapping is invisible to the program, and not even under it's control!

18

Stack

Heap

Initialized vars
(data segment)‏

Code
(text segment)‏

Uninitialized vars
(BSS segment)‏

(Reserved for OS)‏

Physical RAM

MMU

Stack

Heap

Initialized vars
(data segment)‏

Code
(text segment)‏

Uninitialized vars
(BSS segment)‏

(Reserved for OS)‏

Stack

Heap

Initialized vars
(data segment)‏

Code
(text segment)‏

Uninitialized vars
(BSS segment)‏

(Reserved for OS)‏

Lots of separate processes

Translation process
  Virtual-to-physical address translation performed by MMU

  Virtual address is broken into a virtual page number and an offset
  Mapping from virtual page to physical frame provided by a page

table (which is stored in memory)

0xdeadbeef = 0xdeadb 0xeef

Virtual page number Offset

page
frame 0

page
frame 1

page
frame 2

page
frame Y

page
frame 3

physical memory

offset
physical address

page frame # page frame #

page table

offset
virtual address

virtual page #

...

Page table entry

0x
de

ad
b

0xeef

Translation process
if (virtual page is invalid or non-resident or protected)
 trap to OS fault handler
else
 physical frame # = pageTable[virtpage#].physPageNum

  Each virtual page can be in physical memory or swapped
out to disk (called “paged out” or just “paged”)

  What must change on a context switch?
  Could copy entire contents of table, but this will be slow
  Instead use an extra layer of indirection: Keep pointer to current

page table and just change pointer

Copyright ©: University of Illinois CS 241 Staff 20

Where is the page table?
  Page Tables store the virtual-to-physical address mappings.
  Where are they located? In memory!
  OK, then. How does the MMU access them?

  The MMU has a special register called the page table base pointer.
  This points to the physical memory address of the top of the page table

for the currently-running process.

21

Process A page tbl

Process B page tbl

Physical RAM

MMU pgtbl base ptr

Page Faults
  What happens when a program accesses a virtual page

that is not mapped into any physical page?
  Hardware triggers a page fault

  Page fault handler
  Find any available free physical page
  If none, evict some resident page to disk
  Allocate a free physical page
  Load the faulted virtual page to the prepared physical page
  Modify the page table

Copyright ©: University of Illinois CS 241 Staff 22

Advantages of Paging
  Simplifies physical memory management

  OS maintains a free list of physical page frames
  To allocate a physical page, just remove an entry from this list

  No external fragmentation!
  Virtual pages from different processes can be interspersed in

physical memory
  No need to allocate pages in a contiguous fashion

  Allocation of memory can be performed at a (relatively) fine
granularity
  Only allocate physical memory to those parts of the address space

that require it
  Can swap unused pages out to disk when physical memory is

running low
  Idle programs won't use up a lot of memory (even if their address

space is huge!)
23

Paging Example

Copyright ©: University of Illinois CS 241 Staff 24

3 1
2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Request Address within
Virtual Memory Page 3

Paging Example

Copyright ©: University of Illinois CS 241 Staff 25

3 1
1 2

3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Request Address within
Virtual Memory Page 1

Paging Example

Copyright ©: University of Illinois CS 241 Staff 26

3 1
1
6

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Request Address within
Virtual Memory Page 6

Paging Example

Copyright ©: University of Illinois CS 241 Staff 27

3 1
1
6
2

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Request Address within
Virtual Memory Page 2

Paging Example

Copyright ©: University of Illinois CS 241 Staff 28

3 1
1
6
2

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Request Address within
Virtual Memory Page 8

What happens when there
is no more space in the

cache?

Paging Example

Copyright ©: University of Illinois CS 241 Staff 29

3 1
1
6
2

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Store Virtual Memory
Page 1 to disk

Paging Example

Copyright ©: University of Illinois CS 241 Staff 30

3 1

6
2

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Process request for Address
within Virtual Memory Page 8

Paging Example

Copyright ©: University of Illinois CS 241 Staff 31

3 1
8
6
2

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Load Virtual Memory
Page 8 to cache

Is paging enough?

32

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Physical RAM

MMU

How do we allocate memory in here?

Memory allocation w/in a process
  What happens when you declare a variable?

  Allocating a page for every variable wouldn’t be efficient
  Allocations within a process are much smaller
  Need to allocate on a finer granularity

  Solution (stack): stack data structure (duh)
  Function calls follow LIFO semantics
  So we can use a stack data structure to represent the

process’s stack – no fragmentation!

  Solution (heap): malloc
  This is a much harder problem
  Need to deal with fragmentation

33

MP2: malloc
  Introduction by Wade

34

