
CS 241
February 1, 2012

Slides adapted in part from material by
Matt Welsh, Harvard U.

1

Memory

Announcements
  MP2 released
  Brighten’s office hours this week

  Wednesday 3-4
  Thursday 3-4

  Talk today: Nick Feamster, Georgia Tech

2

“The Battle for Control of
Online Communications”

4:00 p.m.
2405 Siebel Center

Recap: Virtual Addresses
 A virtual address is a memory address that a process uses

to access its own memory
 Virtual address ≠ actual physical RAM address
 When a process accesses a virtual address, the MMU hardware translates

the virtual address into a physical address
 The OS determines the mapping from virtual address to physical address

 Benefit: Isolation
 Virtual addresses in one process refer to different physical memory than

virtual addresses in another
 Exception: shared memory regions between processes (discussed later)

 Benefit: Illusion of larger memory space
 Can store unused parts of virtual memory on disk temporarily

 Benefit: Relocation
 A program does not need to know which physical addresses it will

use when it’s run
 Can even change physical location while program is running

3

Mapping virtual to physical addresses

4

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Physical RAM

MMU

How does this thing work??

MMU and TLB
  Memory Management Unit (MMU)

  Hardware that translates a virtual address to a physical address
  Each memory reference is passed through the MMU
  Translate a virtual address to a physical address

  Lots of ways of doing this!

  Translation Lookaside Buffer (TLB)
  Cache for MMU virtual-to-physical address translations
  Just an optimization – but an important one!

5

CPU MMU Virtual
address

Physical
address Memory

TLB

Cache of translations

Translation
mapping

Translating virtual to physical
  Can do it almost any way we like
  But, some ways are better than others…

  Strawman solution from last time:
base and bound

6

Base and bound

if (virt addr > bound)
 trap to kernel
else
 phys addr = virt addr + base

  Process has the illusion of
running on its own
dedicated machine with
memory [0,bound)

  Provides protection from
other processes also
currently in memory

Copyright ©: University of Illinois CS 241 Staff 7

physical
memory

physical
memory
size

base + bound

base
bound

virtual
memory

0 0

Base and bound

Copyright ©: University of Illinois CS 241 Staff 8

Memory

Bounds Register Base Register

CPU
Address < +

Memory
Address

MA

Logical
Address LA

Physical
Address

PA

Fault

Base Address

Bound
Address

MA+BA

Base
Address

BA

Base: start of the process’s memory partition
Bound: length of the process’s memory partition

Base and bounds

  Problem: Process needs more
memory over time
  Stack grows as functions are called
  Heap grows upon request (malloc)
  Processes start and end

  How does the kernel handle the
address space growing?
  You are the OS designer
  Design strategy for allowing

processes to grow

Copyright ©: University of Illinois CS 241 Staff 9

physical
memory

base + bound

base
bound

virtual
memory

0 0

Process 1

Process 2

But wait, didn’t we solve this?

  Problem: wasted space
  And must have virtual mem ≤ phys mem

10

Code segment

Data segment

Heap

Stack

fixed size

fixed size

grows
dynamically

grows
dynamically

physical
memory

base + bound

base

Another attempt: segmentation
  Segment

  Region of contiguous memory
  Segmentation

  Generalized base and bounds with support for
multiple segments at once

Copyright ©: University of Illinois CS 241 Staff 11

Segmentation

Copyright ©: University of Illinois CS 241 Staff 12

code

stack

data code

stack

data

physical
memory

virtual
memory
segment 3

Virtual
memory
segment 1

Virtual
memory
segment 0

0

0

0

0

fff

4ff

6ff
0

4ff

2000

2fff

4000

46ff

Seg # Base Bound Description

0 4000 700 Code
segment

1 0 500 Data
segment

2 Unused

3 2000 1000 Stack
segment

Segmentation

  Segments are specified
many different ways

  Advantages over base
and bounds?

  Protection
  Different segments can

have different protections

  Flexibility
  Can separately grow both

a stack and heap
  Enables sharing of code

and other segments if
needed Copyright ©: University of Illinois CS 241 Staff 13

code

stack

data code

stack

data

physical
memory

virtual
memory
segment 3

Virtual
memory
segment 1

Virtual
memory
segment 0

0

0

0

0

fff

4ff

6ff
0

4ff

2000

2fff

4000

46ff

Segmentation

  Segments are specified
many different ways

  What are the advantages
over base and bounds?

  What must be changed on
context switch?
  Contents of your

segmentation table
  A pointer to the table, expose

caching semantics to the
software (what x86 does)

Copyright ©: University of Illinois CS 241 Staff 14

code

stack

data code

stack

data

physical
memory

virtual
memory
segment 3

Virtual
memory
segment 1

Virtual
memory
segment 0

0

0

0

0

fff

4ff

6ff
0

4ff

2000

2fff

4000

46ff

Recap: mapping virtual memory
  Base & bounds

  Problem: growth is inflexible
  Problem: external fragmentation

  As jobs run and complete, holes left in physical memory

  Segments

  Resize pieces based on process needs
  Problem: external fragmentation
  Note: x86 used to support segmentation, now

effectively deprecated with x86-64

  Modern approach: Paging

15

Copyright ©: University of Illinois CS 241 Staff 16

Paging

Paging
  Solve the external fragmentation problem by using fixed-

size chunks of virtual and physical memory
  Virtual memory unit called a page
  Physical memory unit called a frame (or sometimes page frame)

17

frame 0

frame 1

frame 2

frame Y

physical memory

…

page 0

page 1

page 2

page X

virtual memory
(for one process)

…

page 3

...

...

Application Perspective
  Application believes it has a single, contiguous address space ranging from 0

to 2P – 1 bytes
  Where P is the number of bits in a pointer (e.g., 32 bits)

  In reality, virtual pages are scattered across physical memory
  This mapping is invisible to the program, and not even under it's control!

18

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Physical RAM

MMU

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Lots of separate processes

Translation process
  Virtual-to-physical address translation performed by MMU

  Virtual address is broken into a virtual page number and an offset
  Mapping from virtual page to physical frame provided by a page

table (which is stored in memory)

0xdeadbeef = 0xdeadb 0xeef

Virtual page number Offset

page
frame 0

page
frame 1

page
frame 2

page
frame Y

page
frame 3

physical memory

offset
physical address

page frame # page frame #

page table

offset
virtual address

virtual page #

...

Page table entry

0x
de

ad
b

0xeef

Translation process
if (virtual page is invalid or non-resident or protected)
 trap to OS fault handler
else
 physical frame # = pageTable[virtpage#].physPageNum

  Each virtual page can be in physical memory or swapped
out to disk (called “paged out” or just “paged”)

  What must change on a context switch?
  Could copy entire contents of table, but this will be slow
  Instead use an extra layer of indirection: Keep pointer to current

page table and just change pointer

Copyright ©: University of Illinois CS 241 Staff 20

Where is the page table?
  Page Tables store the virtual-to-physical address mappings.
  Where are they located? In memory!
  OK, then. How does the MMU access them?

  The MMU has a special register called the page table base pointer.
  This points to the physical memory address of the top of the page table

for the currently-running process.

21

Process A page tbl

Process B page tbl

Physical RAM

MMU pgtbl base ptr

Page Faults
  What happens when a program accesses a virtual page

that is not mapped into any physical page?
  Hardware triggers a page fault

  Page fault handler
  Find any available free physical page
  If none, evict some resident page to disk
  Allocate a free physical page
  Load the faulted virtual page to the prepared physical page
  Modify the page table

Copyright ©: University of Illinois CS 241 Staff 22

Advantages of Paging
  Simplifies physical memory management

  OS maintains a free list of physical page frames
  To allocate a physical page, just remove an entry from this list

  No external fragmentation!
  Virtual pages from different processes can be interspersed in

physical memory
  No need to allocate pages in a contiguous fashion

  Allocation of memory can be performed at a (relatively) fine
granularity
  Only allocate physical memory to those parts of the address space

that require it
  Can swap unused pages out to disk when physical memory is

running low
  Idle programs won't use up a lot of memory (even if their address

space is huge!)
23

Paging Example

Copyright ©: University of Illinois CS 241 Staff 24

3 1
2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Request Address within
Virtual Memory Page 3

Paging Example

Copyright ©: University of Illinois CS 241 Staff 25

3 1
1 2

3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Request Address within
Virtual Memory Page 1

Paging Example

Copyright ©: University of Illinois CS 241 Staff 26

3 1
1
6

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Request Address within
Virtual Memory Page 6

Paging Example

Copyright ©: University of Illinois CS 241 Staff 27

3 1
1
6
2

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Request Address within
Virtual Memory Page 2

Paging Example

Copyright ©: University of Illinois CS 241 Staff 28

3 1
1
6
2

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Request Address within
Virtual Memory Page 8

What happens when there
is no more space in the

cache?

Paging Example

Copyright ©: University of Illinois CS 241 Staff 29

3 1
1
6
2

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Store Virtual Memory
Page 1 to disk

Paging Example

Copyright ©: University of Illinois CS 241 Staff 30

3 1

6
2

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Process request for Address
within Virtual Memory Page 8

Paging Example

Copyright ©: University of Illinois CS 241 Staff 31

3 1
8
6
2

2
3
4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table
VM Frame

Real Memory Load Virtual Memory
Page 8 to cache

Is paging enough?

32

Stack

Heap

Initialized vars
(data segment)

Code
(text segment)

Uninitialized vars
(BSS segment)

(Reserved for OS)

Physical RAM

MMU

How do we allocate memory in here?

Memory allocation w/in a process
  What happens when you declare a variable?

  Allocating a page for every variable wouldn’t be efficient
  Allocations within a process are much smaller
  Need to allocate on a finer granularity

  Solution (stack): stack data structure (duh)
  Function calls follow LIFO semantics
  So we can use a stack data structure to represent the

process’s stack – no fragmentation!

  Solution (heap): malloc
  This is a much harder problem
  Need to deal with fragmentation

33

MP2: malloc
  Introduction by Wade

34

