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Memory   



Announcements 

  MP1 due Tuesday 11:59 pm via svn 
  MP2 out Wednesday 
  Research opportunity 

  With Nitin Vaidya 
  Related to networks / distributed systems 
  See Piazza for details 
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Address Spaces and Memory 

  Process 
  One or more thread 
  One address space 

  Thread 
  Stream of execution 
  Unit of concurrency 

  Address space 
  Memory space that threads use 
  Unit of data 
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Address Space Abstraction 

  Address space 
  All memory data 
  i.e., program code, stack, data segment 

  Hardware interface (physical reality) 
  Computer has one small, shared memory 

  Application interface (illusion) 
  Each process wants private, large memory 
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How can 
we close 
this gap? 



Address Space Illusions 

  Address independence 
 
 

  Protection 
 
 

  Virtual memory 
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Address Space Illusions 

  Address independence 
  Same address can be used in different address 

spaces yet remain logically distinct 
  Protection 

  One address space cannot access data in 
another address space 

  Virtual memory 
  Address space can be larger than the amount of 

physical memory on the machine 
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Address Space Illusions 
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Illusion 
 

Giant address space 
Protected from others 

(Unless you want to share) 
More whenever you want it 

Reality 
 

Many processes sharing 
One address space 

Limited memory 

Today: 
The story of the Illusion 



Address Space 
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Code segment 

Data segment 

Heap 

Stack 
0xffffffffffffffff 

0x0 
fixed size 

fixed size 

grows  
dynamically 

grows  
dynamically 



Uni-programming 

  1 process runs at a time 
  Always load process into 

the same spot 
  How do you switch 

processes? 
  What illusions does this 

provide? 
  Independence, protection, 

virtual memory? 

  Problems? 
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Uni-programming 

  1 process runs at a time 
  Always load process into 

the same spot 
  How do you switch 

processes? 
  What illusions does this 

provide? 
  Independence, protection, 

virtual memory 

  Problems? 
  Slow, large time slices 
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Multi-Programming 

  Multiple processes in memory at the same 
time 

  What if there are more processes than what 
could fit into the memory? 
  Swapping 

  Impact: Memory allocation changes as  
  Processes come into memory 
  Processes leave memory 

  Swapped to disk 
  Complete execution 
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Swapping 
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Swapping 
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Swapping 
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Swapping 
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Swapping 
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Swapping 

Copyright ©: University of Illinois CS 241 Staff 17 

Monitor 
Disk 

User 2 

User 2 

User 
Partition 

User 1 



Swapping 
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Storage Placement Strategies 

  First fit 
  Use the first available hole whose size is sufficient to meet 

the need 
  Rationale? 

  Best fit 
  Use the hole whose size is equal to the need, or if none is 

equal, the hole that is larger but closest in size 
  Rationale? 

  Worst fit 
  Use the largest available hole 
  Rationale? 
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Example 

  Consider a system in which memory 
consists of the following hole sizes in 
memory order:  
  10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.  
  Which hole is taken for successive requests of:   

  12K   
  10K   
  9K  
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Example 

  Consider a system in which memory 
consists of the following hole sizes in 
memory order:  
  10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.  
  Which hole is taken for successive requests of:   

  12K   
  10K   
  9K  
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First fit: 
20K, 10K, 
18K.    

Best fit: 
12K, 10K, 
9K. 

Worst fit: 
20K, 18K, 
and 15K.  



Storage Placement Strategies 

  Best fit 
  Produces the smallest leftover hole 
  Creates small holes that cannot be used  

  Worst Fit 
  Produces the largest leftover hole 
  Difficult to run large programs  

  First Fit 
  Creates average size holes  

  First-fit and best-fit better than worst-fit in terms of 
speed and storage utilization 
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Fragmentation 

  External Fragmentation  
  Memory space exists to satisfy a request, 

but it is not contiguous 
  Internal Fragmentation  

  Allocated memory may be slightly larger 
than requested memory 

  The size difference is memory internal to 
a partition, but not being used 
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Compaction 

  Reduce external fragmentation by 
compaction 
  Shuffle memory contents to place all free 

memory together in one large block 
  Compaction is possible only if relocation 

is dynamic, and is done at execution time 
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Solve Fragmentation w. 
Compaction 
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Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 5 

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 6 

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 7 

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 8 

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 9 



Limitations of Swapping 

  Problems with swapping 
  Process must fit into physical memory 

(impossible to run larger processes) 
  Memory becomes fragmented 
  Processes are either in memory or on disk 

  Half and half doesn’t do any good 
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Virtual memory 

  Basic idea 
  Allow the OS to hand out more memory than 

exists on the system 
  Keep recently used stuff in physical memory 
  Move less recently used stuff to disk 
  Keep all of this hidden from processes 

  Process view 
  Processes still see an address space from 0 – 

max address 
  Actual physical location (and movement) of 

memory handled by the OS without process help 
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Virtual Addresses 

  Virtual address 
  An address meaningful to the user process 

  Physical address 
  An address meaningful to the physical memory 

  Different jobs run at different phy. addresses 
  But virtual address can be the same 

  Program never sees physical address 
  Linker must know program’s starting memory 

address 
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Multi-programming 

  Multiple processes in memory at the same time 
  What do we really need? 

  Address translation 
  Translate every memory reference from 

virtual address to physical address 
  Static before execution, or dynamic during 

execution? 
  Protection 

  Support independent addresses spaces 
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Dynamic Address Translation 

  Load each process into contiguous regions of 
physical memory 

  Logical or "Virtual"  
addresses 
  Logical address  

space 
  Range: 0 to max 

 
 
 

  Physical addresses 
  Physical address space 
  Range: R+0 to R+max 

for base value R 
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Dynamic Address Translation 

  Translation enforces protection 
  One process can’t even refer to another process’s address 

space 
  Translation enables virtual memory 

  A virtual address only needs to be in physical memory when it 
is being accessed 

  Change translations on the fly as different virtual addresses 
occupy physical memory 

User 
process 

Translator 
(MMU) 

Physical 
memory 

Virt  
addr 

Phys  
addr 
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Wheeler On Indirection 
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“Any problem in computer 
science can be solved with 
another level of indirection… 

David Wheeler 
…except for the problem of 
too many layers of 
indirection.” 



Dynamic Address Translation 

  Implementation tradeoffs 
  Flexibility (e.g., sharing, growth, virtual memory) 
  Size of translation data 
  Speed of translation 

User 
process 

Translator 
(MMU) 

Physical 
memory 
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Virt  
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addr 



Base Register 
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MMU 

Memory 

Base Register 

CPU  
Instruction 
Address 

+ 

BA 

MA MA+BA 

Physical 
Address 

Logical 
Address 

Base Address 

Base: start of the process’s memory partition 



Base Register 
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MMU 

Memory 

Base Register 

CPU  
Instruction 
Address 

+ 

14000 

346 14346 

Physical 
Address 

Logical 
Address 

Base Address 

Base: start of the process’s memory partition 



Protection 

  Problem 
  How to prevent a malicious process from 

writing or jumping into other user's or OS 
partitions 

  Solution 
  Base bounds registers  
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Base and bounds 

if (virt addr > bound) 
    trap to kernel 
} else { 
    phys addr =  

   virt addr + base 
} 
 

  Process has the illusion 
of running on its own 
dedicated machine with 
memory [0,bound) 

  Provides protection from 
other processes also 
currently in memory 
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physical   
memory 

physical   
memory 
size 
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base 
bound 

virtual 
memory 

0 0 



Base and bounds 
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Memory 

Bounds Register Base Register 

CPU 
Address < + 

Memory 
Address 

MA 

Logical 
Address LA 

Physical 
Address 

PA 

Fault 

Base Address 

Bound  
Address 

MA+BA 

Base 
Address 

BA 

Base: start of the process’s memory partition 
Bound: length of the process’s memory partition 



Base and bounds 

  What must change during a context switch? 

  Can a process change its own base and 
bound? 

  Can you share memory with another 
process? 
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Base and bounds 

  What must change during a context switch? 
  The base and the bounds registers 

  Can a process change its own base and 
bound? 
  No, only the OS can change these registers 
  The program can do it indirectly (e.g., ask for 

more memory in stack) 
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Base and bounds 

  Problem: Process needs more 
memory over time 

  How does the kernel handle the 
address space growing? 
  You are the OS designer 
  Design algorithm for allowing 

processes to grow 
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