
CS 241
January 30, 2012

Copyright ©: University of Illinois CS 241 Staff 1

Memory

Announcements

  MP1 due Tuesday 11:59 pm via svn
  MP2 out Wednesday
  Research opportunity

  With Nitin Vaidya
  Related to networks / distributed systems
  See Piazza for details

Copyright ©: University of Illinois CS 241 Staff 2

Address Spaces and Memory

  Process
  One or more thread
  One address space

  Thread
  Stream of execution
  Unit of concurrency

  Address space
  Memory space that threads use
  Unit of data

Copyright ©: University of Illinois CS 241 Staff 3

Address Space Abstraction

  Address space
  All memory data
  i.e., program code, stack, data segment

  Hardware interface (physical reality)
  Computer has one small, shared memory

  Application interface (illusion)
  Each process wants private, large memory

Copyright ©: University of Illinois CS 241 Staff 4

How can
we close
this gap?

Address Space Illusions

  Address independence

  Protection

  Virtual memory

Copyright ©: University of Illinois CS 241 Staff 5

Address Space Illusions

  Address independence
  Same address can be used in different address

spaces yet remain logically distinct
  Protection

  One address space cannot access data in
another address space

  Virtual memory
  Address space can be larger than the amount of

physical memory on the machine

Copyright ©: University of Illinois CS 241 Staff 6

Address Space Illusions

Copyright ©: University of Illinois CS 241 Staff 7

Illusion

Giant address space
Protected from others

(Unless you want to share)
More whenever you want it

Reality

Many processes sharing
One address space

Limited memory

Today:
The story of the Illusion

Address Space

Copyright ©: University of Illinois CS 241 Staff 8

Code segment

Data segment

Heap

Stack
0xffffffffffffffff

0x0
fixed size

fixed size

grows
dynamically

grows
dynamically

Uni-programming

  1 process runs at a time
  Always load process into

the same spot
  How do you switch

processes?
  What illusions does this

provide?
  Independence, protection,

virtual memory?

  Problems?

Copyright ©: University of Illinois CS 241 Staff 9

User
Program

Operating
Systems in

ROM

0

Uni-programming

  1 process runs at a time
  Always load process into

the same spot
  How do you switch

processes?
  What illusions does this

provide?
  Independence, protection,

virtual memory

  Problems?
  Slow, large time slices

Copyright ©: University of Illinois CS 241 Staff 10

User
Program

Operating
Systems in

ROM

0

Multi-Programming

  Multiple processes in memory at the same
time

  What if there are more processes than what
could fit into the memory?
  Swapping

  Impact: Memory allocation changes as
  Processes come into memory
  Processes leave memory

  Swapped to disk
  Complete execution

Copyright ©: University of Illinois CS 241 Staff 11

Swapping

Copyright ©: University of Illinois CS 241 Staff 12

Monitor
Disk

User
Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 13

Monitor
Disk

User 1

User
Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 14

Monitor

User 1

Disk

User 1

User
Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 15

Monitor

User 2

User 1

Disk

User 1

User
Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 16

Monitor
Disk

User 2

User 2

User
Partition

User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 17

Monitor
Disk

User 2

User 2

User
Partition

User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 18

Monitor
Disk

User 1

User 2

User
Partition

User 1

Storage Placement Strategies

  First fit
  Use the first available hole whose size is sufficient to meet

the need
  Rationale?

  Best fit
  Use the hole whose size is equal to the need, or if none is

equal, the hole that is larger but closest in size
  Rationale?

  Worst fit
  Use the largest available hole
  Rationale?

Copyright ©: University of Illinois CS 241 Staff 19

Example

  Consider a system in which memory
consists of the following hole sizes in
memory order:
  10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.
  Which hole is taken for successive requests of:

  12K
  10K
  9K

Copyright ©: University of Illinois CS 241 Staff 20

Example

  Consider a system in which memory
consists of the following hole sizes in
memory order:
  10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.
  Which hole is taken for successive requests of:

  12K
  10K
  9K

Copyright ©: University of Illinois CS 241 Staff 21

First fit:
20K, 10K,
18K.

Best fit:
12K, 10K,
9K.

Worst fit:
20K, 18K,
and 15K.

Storage Placement Strategies

  Best fit
  Produces the smallest leftover hole
  Creates small holes that cannot be used

  Worst Fit
  Produces the largest leftover hole
  Difficult to run large programs

  First Fit
  Creates average size holes

  First-fit and best-fit better than worst-fit in terms of
speed and storage utilization

Copyright ©: University of Illinois CS 241 Staff 22

Fragmentation

  External Fragmentation
  Memory space exists to satisfy a request,

but it is not contiguous
  Internal Fragmentation

  Allocated memory may be slightly larger
than requested memory

  The size difference is memory internal to
a partition, but not being used

Copyright ©: University of Illinois CS 241 Staff 23

Compaction

  Reduce external fragmentation by
compaction
  Shuffle memory contents to place all free

memory together in one large block
  Compaction is possible only if relocation

is dynamic, and is done at execution time

Copyright ©: University of Illinois CS 241 Staff 24

Solve Fragmentation w.
Compaction

Copyright ©: University of Illinois CS 241 Staff 25

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 5

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 6

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 7

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 8

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 9

Limitations of Swapping

  Problems with swapping
  Process must fit into physical memory

(impossible to run larger processes)
  Memory becomes fragmented
  Processes are either in memory or on disk

  Half and half doesn’t do any good

Copyright ©: University of Illinois CS 241 Staff 26

Virtual memory

  Basic idea
  Allow the OS to hand out more memory than

exists on the system
  Keep recently used stuff in physical memory
  Move less recently used stuff to disk
  Keep all of this hidden from processes

  Process view
  Processes still see an address space from 0 –

max address
  Actual physical location (and movement) of

memory handled by the OS without process help
Copyright ©: University of Illinois CS 241 Staff 27

Virtual Addresses

  Virtual address
  An address meaningful to the user process

  Physical address
  An address meaningful to the physical memory

  Different jobs run at different phy. addresses
  But virtual address can be the same

  Program never sees physical address
  Linker must know program’s starting memory

address

Copyright ©: University of Illinois CS 241 Staff 28

Multi-programming

  Multiple processes in memory at the same time
  What do we really need?

  Address translation
  Translate every memory reference from

virtual address to physical address
  Static before execution, or dynamic during

execution?
  Protection

  Support independent addresses spaces

Copyright ©: University of Illinois CS 241 Staff 29

Dynamic Address Translation

  Load each process into contiguous regions of
physical memory

  Logical or "Virtual"
addresses
  Logical address

space
  Range: 0 to max

  Physical addresses
  Physical address space
  Range: R+0 to R+max

for base value R

Copyright ©: University of Illinois CS 241 Staff 30

Dynamic Address Translation

  Translation enforces protection
  One process can’t even refer to another process’s address

space
  Translation enables virtual memory

  A virtual address only needs to be in physical memory when it
is being accessed

  Change translations on the fly as different virtual addresses
occupy physical memory

User
process

Translator
(MMU)

Physical
memory

Virt
addr

Phys
addr

Copyright ©: University of Illinois CS 241 Staff 31

Wheeler On Indirection

Copyright ©: University of Illinois CS 241 Staff 32

“Any problem in computer
science can be solved with
another level of indirection…

David Wheeler
…except for the problem of
too many layers of
indirection.”

Dynamic Address Translation

  Implementation tradeoffs
  Flexibility (e.g., sharing, growth, virtual memory)
  Size of translation data
  Speed of translation

User
process

Translator
(MMU)

Physical
memory

Copyright ©: University of Illinois CS 241 Staff 33

Virt
addr

Phys
addr

Base Register

Copyright ©: University of Illinois CS 241 Staff 34

MMU

Memory

Base Register

CPU
Instruction
Address

+

BA

MA MA+BA

Physical
Address

Logical
Address

Base Address

Base: start of the process’s memory partition

Base Register

Copyright ©: University of Illinois CS 241 Staff 35

MMU

Memory

Base Register

CPU
Instruction
Address

+

14000

346 14346

Physical
Address

Logical
Address

Base Address

Base: start of the process’s memory partition

Protection

  Problem
  How to prevent a malicious process from

writing or jumping into other user's or OS
partitions

  Solution
  Base bounds registers

Copyright ©: University of Illinois CS 241 Staff 36

Base and bounds

if (virt addr > bound)
 trap to kernel
} else {
 phys addr =

 virt addr + base
}

  Process has the illusion
of running on its own
dedicated machine with
memory [0,bound)

  Provides protection from
other processes also
currently in memory

 Copyright ©: University of Illinois CS 241 Staff 37

physical
memory

physical
memory
size

base + bound

base
bound

virtual
memory

0 0

Base and bounds

Copyright ©: University of Illinois CS 241 Staff 38

Memory

Bounds Register Base Register

CPU
Address < +

Memory
Address

MA

Logical
Address LA

Physical
Address

PA

Fault

Base Address

Bound
Address

MA+BA

Base
Address

BA

Base: start of the process’s memory partition
Bound: length of the process’s memory partition

Base and bounds

  What must change during a context switch?

  Can a process change its own base and
bound?

  Can you share memory with another
process?

Copyright ©: University of Illinois CS 241 Staff 39

Base and bounds

  What must change during a context switch?
  The base and the bounds registers

  Can a process change its own base and
bound?
  No, only the OS can change these registers
  The program can do it indirectly (e.g., ask for

more memory in stack)

Copyright ©: University of Illinois CS 241 Staff 40

Base and bounds

  Problem: Process needs more
memory over time

  How does the kernel handle the
address space growing?
  You are the OS designer
  Design algorithm for allowing

processes to grow

Copyright ©: University of Illinois CS 241 Staff 41

physical
memory

base + bound

base
bound

virtual
memory

0 0

Process 1

Process 2

