
CS 241
January 30, 2012

Copyright ©: University of Illinois CS 241 Staff 1

Memory

Announcements

  MP1 due Tuesday 11:59 pm via svn
  MP2 out Wednesday
  Research opportunity

  With Nitin Vaidya
  Related to networks / distributed systems
  See Piazza for details

Copyright ©: University of Illinois CS 241 Staff 2

Address Spaces and Memory

  Process
  One or more thread
  One address space

  Thread
  Stream of execution
  Unit of concurrency

  Address space
  Memory space that threads use
  Unit of data

Copyright ©: University of Illinois CS 241 Staff 3

Address Space Abstraction

  Address space
  All memory data
  i.e., program code, stack, data segment

  Hardware interface (physical reality)
  Computer has one small, shared memory

  Application interface (illusion)
  Each process wants private, large memory

Copyright ©: University of Illinois CS 241 Staff 4

How can
we close
this gap?

Address Space Illusions

  Address independence

  Protection

  Virtual memory

Copyright ©: University of Illinois CS 241 Staff 5

Address Space Illusions

  Address independence
  Same address can be used in different address

spaces yet remain logically distinct
  Protection

  One address space cannot access data in
another address space

  Virtual memory
  Address space can be larger than the amount of

physical memory on the machine

Copyright ©: University of Illinois CS 241 Staff 6

Address Space Illusions

Copyright ©: University of Illinois CS 241 Staff 7

Illusion

Giant address space
Protected from others

(Unless you want to share)
More whenever you want it

Reality

Many processes sharing
One address space

Limited memory

Today:
The story of the Illusion

Address Space

Copyright ©: University of Illinois CS 241 Staff 8

Code segment

Data segment

Heap

Stack
0xffffffffffffffff

0x0
fixed size

fixed size

grows
dynamically

grows
dynamically

Uni-programming

  1 process runs at a time
  Always load process into

the same spot
  How do you switch

processes?
  What illusions does this

provide?
  Independence, protection,

virtual memory?

  Problems?

Copyright ©: University of Illinois CS 241 Staff 9

User
Program

Operating
Systems in

ROM

0

Uni-programming

  1 process runs at a time
  Always load process into

the same spot
  How do you switch

processes?
  What illusions does this

provide?
  Independence, protection,

virtual memory

  Problems?
  Slow, large time slices

Copyright ©: University of Illinois CS 241 Staff 10

User
Program

Operating
Systems in

ROM

0

Multi-Programming

  Multiple processes in memory at the same
time

  What if there are more processes than what
could fit into the memory?
  Swapping

  Impact: Memory allocation changes as
  Processes come into memory
  Processes leave memory

  Swapped to disk
  Complete execution

Copyright ©: University of Illinois CS 241 Staff 11

Swapping

Copyright ©: University of Illinois CS 241 Staff 12

Monitor
Disk

User
Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 13

Monitor
Disk

User 1

User
Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 14

Monitor

User 1

Disk

User 1

User
Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 15

Monitor

User 2

User 1

Disk

User 1

User
Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 16

Monitor
Disk

User 2

User 2

User
Partition

User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 17

Monitor
Disk

User 2

User 2

User
Partition

User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 18

Monitor
Disk

User 1

User 2

User
Partition

User 1

Storage Placement Strategies

  First fit
  Use the first available hole whose size is sufficient to meet

the need
  Rationale?

  Best fit
  Use the hole whose size is equal to the need, or if none is

equal, the hole that is larger but closest in size
  Rationale?

  Worst fit
  Use the largest available hole
  Rationale?

Copyright ©: University of Illinois CS 241 Staff 19

Example

  Consider a system in which memory
consists of the following hole sizes in
memory order:
  10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.
  Which hole is taken for successive requests of:

  12K
  10K
  9K

Copyright ©: University of Illinois CS 241 Staff 20

Example

  Consider a system in which memory
consists of the following hole sizes in
memory order:
  10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.
  Which hole is taken for successive requests of:

  12K
  10K
  9K

Copyright ©: University of Illinois CS 241 Staff 21

First fit:
20K, 10K,
18K.

Best fit:
12K, 10K,
9K.

Worst fit:
20K, 18K,
and 15K.

Storage Placement Strategies

  Best fit
  Produces the smallest leftover hole
  Creates small holes that cannot be used

  Worst Fit
  Produces the largest leftover hole
  Difficult to run large programs

  First Fit
  Creates average size holes

  First-fit and best-fit better than worst-fit in terms of
speed and storage utilization

Copyright ©: University of Illinois CS 241 Staff 22

Fragmentation

  External Fragmentation
  Memory space exists to satisfy a request,

but it is not contiguous
  Internal Fragmentation

  Allocated memory may be slightly larger
than requested memory

  The size difference is memory internal to
a partition, but not being used

Copyright ©: University of Illinois CS 241 Staff 23

Compaction

  Reduce external fragmentation by
compaction
  Shuffle memory contents to place all free

memory together in one large block
  Compaction is possible only if relocation

is dynamic, and is done at execution time

Copyright ©: University of Illinois CS 241 Staff 24

Solve Fragmentation w.
Compaction

Copyright ©: University of Illinois CS 241 Staff 25

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 5

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 6

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 7

Monitor Job 3 Job 5 Job 6 Job 7 Job 8 8

Monitor Job 3 Free Job 5 Job 6 Job 7 Job 8 9

Limitations of Swapping

  Problems with swapping
  Process must fit into physical memory

(impossible to run larger processes)
  Memory becomes fragmented
  Processes are either in memory or on disk

  Half and half doesn’t do any good

Copyright ©: University of Illinois CS 241 Staff 26

Virtual memory

  Basic idea
  Allow the OS to hand out more memory than

exists on the system
  Keep recently used stuff in physical memory
  Move less recently used stuff to disk
  Keep all of this hidden from processes

  Process view
  Processes still see an address space from 0 –

max address
  Actual physical location (and movement) of

memory handled by the OS without process help
Copyright ©: University of Illinois CS 241 Staff 27

Virtual Addresses

  Virtual address
  An address meaningful to the user process

  Physical address
  An address meaningful to the physical memory

  Different jobs run at different phy. addresses
  But virtual address can be the same

  Program never sees physical address
  Linker must know program’s starting memory

address

Copyright ©: University of Illinois CS 241 Staff 28

Multi-programming

  Multiple processes in memory at the same time
  What do we really need?

  Address translation
  Translate every memory reference from

virtual address to physical address
  Static before execution, or dynamic during

execution?
  Protection

  Support independent addresses spaces

Copyright ©: University of Illinois CS 241 Staff 29

Dynamic Address Translation

  Load each process into contiguous regions of
physical memory

  Logical or "Virtual"
addresses
  Logical address

space
  Range: 0 to max

  Physical addresses
  Physical address space
  Range: R+0 to R+max

for base value R

Copyright ©: University of Illinois CS 241 Staff 30

Dynamic Address Translation

  Translation enforces protection
  One process can’t even refer to another process’s address

space
  Translation enables virtual memory

  A virtual address only needs to be in physical memory when it
is being accessed

  Change translations on the fly as different virtual addresses
occupy physical memory

User
process

Translator
(MMU)

Physical
memory

Virt
addr

Phys
addr

Copyright ©: University of Illinois CS 241 Staff 31

Wheeler On Indirection

Copyright ©: University of Illinois CS 241 Staff 32

“Any problem in computer
science can be solved with
another level of indirection…

David Wheeler
…except for the problem of
too many layers of
indirection.”

Dynamic Address Translation

  Implementation tradeoffs
  Flexibility (e.g., sharing, growth, virtual memory)
  Size of translation data
  Speed of translation

User
process

Translator
(MMU)

Physical
memory

Copyright ©: University of Illinois CS 241 Staff 33

Virt
addr

Phys
addr

Base Register

Copyright ©: University of Illinois CS 241 Staff 34

MMU

Memory

Base Register

CPU
Instruction
Address

+

BA

MA MA+BA

Physical
Address

Logical
Address

Base Address

Base: start of the process’s memory partition

Base Register

Copyright ©: University of Illinois CS 241 Staff 35

MMU

Memory

Base Register

CPU
Instruction
Address

+

14000

346 14346

Physical
Address

Logical
Address

Base Address

Base: start of the process’s memory partition

Protection

  Problem
  How to prevent a malicious process from

writing or jumping into other user's or OS
partitions

  Solution
  Base bounds registers

Copyright ©: University of Illinois CS 241 Staff 36

Base and bounds

if (virt addr > bound)
 trap to kernel
} else {
 phys addr =

 virt addr + base
}

  Process has the illusion
of running on its own
dedicated machine with
memory [0,bound)

  Provides protection from
other processes also
currently in memory

 Copyright ©: University of Illinois CS 241 Staff 37

physical
memory

physical
memory
size

base + bound

base
bound

virtual
memory

0 0

Base and bounds

Copyright ©: University of Illinois CS 241 Staff 38

Memory

Bounds Register Base Register

CPU
Address < +

Memory
Address

MA

Logical
Address LA

Physical
Address

PA

Fault

Base Address

Bound
Address

MA+BA

Base
Address

BA

Base: start of the process’s memory partition
Bound: length of the process’s memory partition

Base and bounds

  What must change during a context switch?

  Can a process change its own base and
bound?

  Can you share memory with another
process?

Copyright ©: University of Illinois CS 241 Staff 39

Base and bounds

  What must change during a context switch?
  The base and the bounds registers

  Can a process change its own base and
bound?
  No, only the OS can change these registers
  The program can do it indirectly (e.g., ask for

more memory in stack)

Copyright ©: University of Illinois CS 241 Staff 40

Base and bounds

  Problem: Process needs more
memory over time

  How does the kernel handle the
address space growing?
  You are the OS designer
  Design algorithm for allowing

processes to grow

Copyright ©: University of Illinois CS 241 Staff 41

physical
memory

base + bound

base
bound

virtual
memory

0 0

Process 1

Process 2

