
CS 241
January 27, 2012

Copyright ©: University of Illinois CS 241 Staff 1

System Calls and I/O

This lecture

  Goals
  Get you familiar with necessary basic system & I/O calls to

do programming

  Things covered in this lecture
  Basic file system calls
  I/O calls
  Signals

  Note: we will come back later to discuss the above
things at the concept level

Copyright ©: University of Illinois CS 241 Staff 2

System Calls versus Function
Calls?

Copyright ©: University of Illinois CS 241 Staff 3

Process

Caller and callee are in the same
Process
 - Same user
 - Same “domain of trust”

Function Call

System Calls versus Function
Calls

Copyright ©: University of Illinois CS 241 Staff 4

fnCall()

System Calls versus Function
Calls

Copyright ©: University of Illinois CS 241 Staff 5

fnCall()

Process

Caller and callee are in the same
Process
 - Same user
 - Same “domain of trust”

Function Call

sysCall()

Process

System Call

OS

- OS is trusted; user is not.
-  OS has super-privileges; user does not
-  Must take measures to prevent abuse

System Calls

  System Calls
  A request to the operating system to perform some activity

  System calls are expensive
  The system needs to perform many things before

executing a system call
  The computer (hardware) saves its state
  The OS code takes control of the CPU, privileges are

updated.
  The OS examines the call parameters
  The OS performs the requested function
  The OS saves its state (and call results)
  The OS returns control of the CPU to the caller

Copyright ©: University of Illinois CS 241 Staff 6

Steps for Making a System
Call (Example: read call)

Copyright ©: University of Illinois CS 241 Staff 7

1 – 3: Push
parameter (in
reverse order)

4 – 5: Library call
(puts syscall # in

CPU register)

6: Switch to kernel
mode (return

address saved on
stack)

7: Find system call
handler

8: Run handler
(index via table of

pointers to
syscall handles)

9: Return to user
mode

10: Return to user
program (via trap)

11: Clean up

count = read(fd, buffer, nbytes);

Examples of System Calls

  Examples
  getuid() //get the user ID
  fork() //create a child process
  exec() //executing a program

  Don’t mix system calls with standard library
calls
  Differences?
  Is printf() a system call?
  Is rand() a system call?

Copyright ©: University of Illinois CS 241 Staff 8

man syscalls

Major System Calls
Process Management
pid = fork() Create a child process identical to the parent

pid = waitpid(pid, &statloc, options) Wait for a child to terminate

s = execve(name, argv, environp) Replace a process’ core image

exit(status) Terminate process execution and return status

Copyright ©: University of Illinois CS 241 Staff 9

File Management
fd = open(file, how, ...) Open a file for reading, writing or both

s = close(fd) Close an open file

n = read(fd, buffer, nbytes) Read data from a file into a buffer

n = write(fd, buffer, nbytes) Write data from a buffer into a file

position = lseek(fd, offset, whence) Move the file pointer

s = stat(name, &buf) Get a file’s status information

Today

Directory and File System Management
s = mkdir(name, mode) Create a new directory

s = rmdir(name) Remove an empty directory

s = link(name, name) Create a new entry, name, pointing to name

s = unlink(name) Remove a directory entry

s = mount(special, name, flag) Mount a file system

s = umount(special) Unmount a file system

Major System Calls

Miscellaneous
s = chdir(dirname) Change the working directory

s = chmod(name, mode) Change a file’s protection bits

s = kill(pid, signal) Send a signal to a process

seconds = time(&seconds) Get the elapsed time since January 1, 1970

Copyright ©: University of Illinois CS 241 Staff 10

File System and I/O Related
System Calls

  A file system
  A means to organize, retrieve, and

updated data in persistent storage
  A hierarchical arrangement of directories
  Bookkeeping information (file metadata)

  File length, # bytes, modified timestamp, etc

  Unix file system
  Root file system starts with “/”

Copyright ©: University of Illinois CS 241 Staff 11

Why does the OS control I/O?

  Safety
  The computer must ensure that if a program has

a bug in it, then it doesn't crash or mess up
  The system
  Other programs that may be running at the same time

or later

  Fairness
  Make sure other programs have a fair use of

device

Copyright ©: University of Illinois CS 241 Staff 12

Basic Unix Concepts

  Input/Output – I/O
  Per-process table of I/O channels
  Table entries describe files, sockets, devices, pipes, etc.
  Table entry/index into table called “file descriptor”
  Unifies I/O interface

Copyright ©: University of Illinois CS 241 Staff 13

user space

pipe

file

socket Per-process file
descriptor

table

kernel system open file
table

Basic Unix Concepts

  Error Model
  errno variable

  Unix provides a globally accessible integer variable that contains an
error code number

  Return value
  0 on success
  -1 on failure for functions returning integer values
  NULL on failure for functions returning pointers

  Examples (see errno.h)
#define EPERM 1 /* Operation not permitted */
#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */
#define EINTR 4 /* Interrupted system call */
#define EIO 5 /* I/O error */

#define ENXIO 6 /* No such device or address */

Copyright ©: University of Illinois CS 241 Staff 14

System Calls for I/O

  Get information about a file
 int stat(const char* name, struct stat* buf);

  Open (and/or create) a file for reading, writing or both
int open (const char* name, in flags);

  Read data from one buffer to file descriptor
size_t read (int fd, void* buf, size_t cnt);

  Write data from file descriptor into buffer
size_t write (int fd, void* buf, size_t cnt);

  Close a file
int close(int fd);

Copyright ©: University of Illinois CS 241 Staff 15

System Calls for I/O

  They look like regular procedure calls but
are different
  A system call makes a request to the operating

system by trapping into kernel mode
  A procedure call just jumps to a procedure

defined elsewhere in your program
  Some library procedure calls may

themselves make a system call
  e.g., fopen() calls open()

Copyright ©: University of Illinois CS 241 Staff 16

File: Statistics

#include <sys/stat.h>
int stat(const char* name, struct stat* buf);
  Get information about a file
  Returns:

  0 on success
  -1 on error, sets errno

  Parameters:
  name: Path to file you want to use

  Absolute paths begin with “/”, relative paths do not
  buf: Statistics structure

  off_t st_size: Size in bytes
  time_t st_mtime: Date of last modification. Seconds since January 1,

1970
  Also
int fstat(int filedes, struct stat *buf);

Copyright ©: University of Illinois CS 241 Staff 17

Example - (stat())

#include <unistd.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
int main(int argc, char **argv) {

 struct stat fileStat;
 if(argc != 2)
 return 1;
 if(stat(argv[1], &fileStat) < 0)
 return 1;
 printf("Information for %s\n",argv[1]);
 printf("---------------------------\n");
 printf("File Size: \t\t%d bytes\n", fileStat.st_size);
printf("Number of Links: \t%d\n", fileStat.st_nlink);
 printf("File inode: \t\t%d\n", fileStat.st_ino);

Copyright ©: University of Illinois CS 241 Staff 18

Example - (stat())
 printf("File Permissions: \t");
 printf((S_ISDIR(fileStat.st_mode)) ? "d" : "-");
 printf((fileStat.st_mode & S_IRUSR) ? "r" : "-");

 printf((fileStat.st_mode & S_IWUSR) ? "w" : "-");
 printf((fileStat.st_mode & S_IXUSR) ? "x" : "-");
 printf((fileStat.st_mode & S_IRGRP) ? "r" : "-");
 printf((fileStat.st_mode & S_IWGRP) ? "w" : "-");
 printf((fileStat.st_mode & S_IXGRP) ? "x" : "-");
 printf((fileStat.st_mode & S_IROTH) ? "r" : "-");

 printf((fileStat.st_mode & S_IWOTH) ? "w" : "-");
 printf((fileStat.st_mode & S_IXOTH) ? "x" : "-");
 printf("\n\n"); printf("The file %s a symbolic link\n",
(S_ISLNK(fileStat.st_mode)) ? "is" : "is not");
 return 0;

}

Copyright ©: University of Illinois CS 241 Staff 19

Useful Macros: File types

  Is file a symbolic
link
  S_ISLNK

  Is file a regular file
  S_ISREG

  Is file a character
device
  S_ISCHR

  Is file a block
device
  S_ISBLK

  Is file a FIFO
  S_ISFIFO

  Is file a unix socket
  S_ISSOCK

Copyright ©: University of Illinois CS 241 Staff 20

Useful Macros: File Modes

  S_IRWXU
  read, write, execute/

search by owner

  S_IRUSR
  read permission, owner

  S_IWUSR
  write permission, owner

  S_IXUSR
  execute/search

permission, owner

  S_IRGRP
  read permission, group

  S_IRWXO
  read, write, execute/

search by others

Copyright ©: University of Illinois CS 241 Staff 21

Example - (stat())
Information for testfile.sh

File Size: 36 bytes

Number of Links: 1
File inode: 180055
File Permissions: -rwxr-xr-x

The file is not a symbolic link

Copyright ©: University of Illinois CS 241 Staff 22

File: Open

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open (const char* path, int flags [, int mode]);
  Open (and/or create) a file for reading, writing or both
  Returns:

  Return value ≥ 0 : Success - New file descriptor on success
  Return value = -1: Error, check value of errno

  Parameters:
  path: Path to file you want to use

  Absolute paths begin with “/”, relative paths do not

  flags: How you would like to use the file
  O_RDONLY: read only, O_WRONLY: write only, O_RDWR: read and write,

O_CREAT: create file if it doesn’t exist, O_EXCL: prevent creation if it already
exists

Copyright ©: University of Illinois CS 241 Staff 23

Example (open())

#include <fcntl.h>
#include <errno.h>
extern int errno;

main() {

 int fd;
 fd = open("foo.txt", O_RDONLY | O_CREAT);
 printf("%d\n", fd);
 if (fd=-1) {
 printf ("Error Number %d\n", errno);
 perror("Program");
 }

}

Copyright ©: University of Illinois CS 241 Staff 24

Argument: string
Output: the string, a colon, and a
description of the error condition
stored in errno

File: Close

#include <fcntl.h>
int close(int fd);
  Close a file

  Tells the operating system you are done with a file
descriptor

  Return:
  0 on success
  -1 on error, sets errno

  Parameters:
  fd: file descriptor

Copyright ©: University of Illinois CS 241 Staff 25

Example (close())

#include <fcntl.h>
main(){

 int fd1;

 if((fd1 = open(“foo.txt", O_RDONLY)) < 0){
 perror("c1");
 exit(1);
 }
 if (close(fd1) < 0) {

 perror("c1");
 exit(1);
 }
 printf("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 26

Example (close())

#include <fcntl.h>
main(){

 int fd1;

 if((fd1 = open(“foo.txt", O_RDONLY)) < 0){
 perror("c1");
 exit(1);
 }
 if (close(fd1) < 0) {

 perror("c1");
 exit(1);
 }
 printf("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 27

After close, can you still use the
file descriptor?

Why do we need to close a file?

File: Read

#include <fcntl.h>
size_t read (int fd, void* buf, size_t cnt);
  Read data from one buffer to file descriptor

  Read size bytes from the file specified by fd into the memory location
pointed to by buf

  Return: How many bytes were actually read
  Number of bytes read on success
  0 on reaching end of file
  -1 on error, sets errno
  -1 on signal interrupt, sets errno to EINTR

  Parameters:
  fd: file descriptor
  buf: buffer to read data from
  cnt: length of buffer

Copyright ©: University of Illinois CS 241 Staff 28

File: Read

size_t read (int fd, void* buf, size_t cnt);

  Things to be careful about
  buf needs to point to a valid memory location with length

not smaller than the specified size
  Otherwise, what could happen?

  fd should be a valid file descriptor returned from open()
to perform read operation
  Otherwise, what could happen?

  cnt is the requested number of bytes read, while the
return value is the actual number of bytes read
  How could this happen?

Copyright ©: University of Illinois CS 241 Staff 29

Example (read())

#include <fcntl.h>
main() {

 char *c;
 int fd, sz;

 c = (char *) malloc(100
 * sizeof(char));
 fd = open(“foo.txt",
 O_RDONLY);
 if (fd < 0) {
 perror("r1");
 exit(1);
 }

 sz = read(fd, c, 10);
 printf("called
 read(%d, c, 10).
 returned that %d
 bytes were
 read.\n", fd, sz);
 c[sz] = '\0';

 printf("Those bytes
 are as follows:
 %s\n", c);
 close(fd);

}

Copyright ©: University of Illinois CS 241 Staff 30

File: Write

#include <fcntl.h>
size_t write (int fd, void* buf, size_t cnt);
  Write data from file descriptor into buffer

  Writes the bytes stored in buf to the file specified by fd
  Return: How many bytes were actually written

  Number of bytes written on success
  0 on reaching end of file
  -1 on error, sets errno
  -1 on signal interrupt, sets errno to EINTR

  Parameters:
  fd: file descriptor
  buf: buffer to write data to
  cnt: length of buffer

Copyright ©: University of Illinois CS 241 Staff 31

File: Write

size_t write (int fd, void* buf, size_t cnt);

  Things to be careful about
  The file needs to be opened for write operations
  buf needs to be at least as long as specified by

cnt
  If not, what will happen?

  cnt is the requested number of bytes to write,
while the return value is the actual number of
bytes written
  How could this happen?

Copyright ©: University of Illinois CS 241 Staff 32

Example (write())

#include <fcntl.h>
main()
{

 int fd, sz;

 fd = open("out3",
 O_RDWR | O_CREAT |
 O_APPEND, 0644);
 if (fd < 0) {
 perror("r1");
 exit(1);
 }

 sz = write(fd, "cs241\n",
 strlen("cs241\n"));

 printf("called write(%d,
 \"cs360\\n\", %d).
 it returned %d\n",
 fd, strlen("cs360\n"),
 sz);

 close(fd);

}

Copyright ©: University of Illinois CS 241 Staff 33

File Pointers

  All open files have a "file pointer" associated
with them to record the current position for
the next file operation

  On open
  File pointer points to the beginning of the file

  After reading/write m bytes
  File pointer moves m bytes forward

Copyright ©: University of Illinois CS 241 Staff 34

File: Seek

#include <unistd.h>
off_t lseek(int fd, off_t offset, int whence);

  Explicitly set the file offset for the open file
  Return: Where the file pointer is

  the new offset, in bytes, from the beginning of the file
  -1 on error, sets errno, file pointer remains unchanged

  Parameters:
  fd: file descriptor
  offset: indicates relative or absolute location
  whence: How you would like to use lseek

  SEEK_SET, set file pointer to offset bytes from the beginning of the file
  SEEK_CUR, set file pointer to offset bytes from current location
  SEEK_END, set file pointer to offset bytes from the end of the file

Copyright ©: University of Illinois CS 241 Staff 35

File: Seek Examples

  Random access
  Jump to any byte in a file

  Move to byte #16
newpos = lseek(fd, 16, SEEK_SET);

  Move forward 4 bytes
newpos = lseek(fd, 4, SEEK_CUR);

  Move to 8 bytes from the end
newpos = lseek(fd, -8, SEEK_END);

Copyright ©: University of Illinois CS 241 Staff 36

Example (lseek())

c = (char *) malloc(100 *
sizeof(char));

fd = open(“foo.txt", O_RDONLY);
if (fd < 0) {

 perror("r1");
 exit(1);

}

sz = read(fd, c, 10);
printf("We have opened in1, and

called read(%d, c, 10).\n",
fd);

c[sz] = '\0';
printf("Those bytes are as

follows: %s\n", c);

i = lseek(fd, 0, SEEK_CUR);
printf("lseek(%d, 0, SEEK_CUR)

returns that the current
offset is %d\n\n", fd, i);

printf("now, we seek to the

beginning of the file and
call read(%d, c, 10)\n",
fd);

lseek(fd, 0, SEEK_SET);
sz = read(fd, c, 10);
c[sz] = '\0';
printf("The read returns the

following bytes: %s\n", c);
…

 Copyright ©: University of Illinois CS 241 Staff 37

Standard Input, Standard
Output and Standard Error

  Every process in Unix has three predefined file descriptors
  File descriptor 0 is standard input (STDIN)
  File descriptor 1 is standard output (STDOUT)
  File descriptor 2 is standard error (STDERR)

  Read from standard input,
  read(0, ...);

  Write to standard output
  write(1, ...);

  Two additional library functions
  printf();
  scanf();

Copyright ©: University of Illinois CS 241 Staff 38

I/O Library Calls
  Every system call has paired procedure calls from the

standard I/O library:

  System Call
  open
  close
  read/write

  lseek

  Standard I/O call (stdio.h)
  fopen
  fclose
  getchar/putchar, getc/

putc, fgetc/fputc,
fread/fwrite, gets/
puts, fgets/fputs,
scanf/printf, fscanf/
fprintf

  fseek

Copyright ©: University of Illinois CS 241 Staff 39

Stream Processing - fgetc()

int fgetc(FILE *stream);
  Read the next character from stream
  Return

  An unsigned char cast to an int
  EOF on end of file
  Error

int getchar(void);
  Read the next character from stdin

int getc(void);
  Similar to , but implemented as a macro, faster and

potentially unsafe
Copyright ©: University of Illinois CS 241 Staff 40

Similar functions for writing:
int fputc(int c, FILE *stream);
int putchar(int c);
int putc(int c, FILE *stream);

Stream Processing - fgets()

char *fgets(char *s, int size, FILE
*stream);

  Read in at most one less than size characters
from stream
  Stores characters in buffer pointed to by s.
  Reading stops after an EOF or a newline.
  If a newline is read, it is stored into the buffer.
  A '\0' is stored after the last character in the buffer.

  Return
  s on success
  NULL on error or on EOF and no characters read

Copyright ©: University of Illinois CS 241 Staff 41

Similar:
int fputs(const char *s, FILE *stream);

Stream Processing

char *gets(char *s);
  Reads a line from stdin
  NOTE: DO NOT USE

  Reading a line that overflows the array pointed to by s
causes undefined results.

  The use of is fgets() recommended

Copyright ©: University of Illinois CS 241 Staff 42

Stream Processing - fputs()

int fputs(const char *s, FILE *stream);
  Write the null-terminated string pointed to by s to

the stream pointed to by stream.
  The terminating null byte is not written

  Return
  Non-neg number on success
  EOF on error

char *puts(char *s);
  Write to stdout

  Appends a newline character

Copyright ©: University of Illinois CS 241 Staff 43

Example: (fgets()- fputs())

#include <stdio.h>
int main() {
 FILE * fp = fopen("test.txt", "r");
 char line[100];
 while(fgets(line, sizeof(line), fp) != NULL)

 fputs(line, stdout);
 fclose(fp);
 return 0;

}

Copyright ©: University of Illinois CS 241 Staff 44

Stream Processing - fscanf()

int scanf(const char *format, ...);
  Read from the standard input stream stdin

  Stores read characters in buffer pointed to by s.

  Return
  Number of successfully matched and assigned input items
  EOF on error

int fscanf(FILE *stream, const char *fmt, ...);
  Read from the named input stream

int sscanf(const char *s, const char *fmt, ...);
  Read from the string s

Copyright ©: University of Illinois CS 241 Staff 45

Example: (scanf())

  Input: 56789 56a72

#include <stdio.h>
int main() {
 int i;
 float x;
 char name[50];
 scanf("%2d%f %[0123456789]", &i, &x, name);

}

Copyright ©: University of Illinois CS 241 Staff 46

What are i, x, and name
after the call to
scanf()?

What will a subsequent call to
getchar()return?

Example: stdin

int x;
char st[31];

/* read first line of input */
printf("Enter an integer: ");
scanf("%d", &x);

/* read second line of input */
printf("Enter a line of text: ");
fgets(st, 31, stdin);

Copyright ©: University of Illinois CS 241 Staff 47

What will
this code
really do?

Example: stdin

int x;
char st[31];

/* read first line of input */
printf("Enter an integer: ");
scanf("%d", &x);

/* read second line of input */
printf("Enter a line of text: ");
fgets(st, 31, stdin);

Copyright ©: University of Illinois CS 241 Staff 48

What will
this code
really do?

Input is buffered, but scanf() did not read all of
the first line

Example: stdin

int x;
char st[31];
/* read first line */
printf("Enter an

integer: ");
scanf("%d", &x);
dump_line(stdin);
/* read second line */
printf("Enter a line of

text: ");
fgets(st, 31, stdin);

void dump_line(FILE *
fp) {
 int ch;
 while((ch = fgetc(fp))
 != EOF &&
 ch != '\n')
 /* null body */;
 }

Copyright ©: University of Illinois CS 241 Staff 49

Read and dump all
characters from input
buffer until a '\n'

after scanf()

