
CS 241
January 27, 2012

Copyright ©: University of Illinois CS 241 Staff 1

System Calls and I/O

This lecture

  Goals
  Get you familiar with necessary basic system & I/O calls to

do programming

  Things covered in this lecture
  Basic file system calls
  I/O calls
  Signals

  Note: we will come back later to discuss the above
things at the concept level

Copyright ©: University of Illinois CS 241 Staff 2

System Calls versus Function
Calls?

Copyright ©: University of Illinois CS 241 Staff 3

Process

Caller and callee are in the same
Process
 - Same user
 - Same “domain of trust”

Function Call

System Calls versus Function
Calls

Copyright ©: University of Illinois CS 241 Staff 4

fnCall()

System Calls versus Function
Calls

Copyright ©: University of Illinois CS 241 Staff 5

fnCall()

Process

Caller and callee are in the same
Process
 - Same user
 - Same “domain of trust”

Function Call

sysCall()

Process

System Call

OS

- OS is trusted; user is not.
-  OS has super-privileges; user does not
-  Must take measures to prevent abuse

System Calls

  System Calls
  A request to the operating system to perform some activity

  System calls are expensive
  The system needs to perform many things before

executing a system call
  The computer (hardware) saves its state
  The OS code takes control of the CPU, privileges are

updated.
  The OS examines the call parameters
  The OS performs the requested function
  The OS saves its state (and call results)
  The OS returns control of the CPU to the caller

Copyright ©: University of Illinois CS 241 Staff 6

Steps for Making a System
Call (Example: read call)

Copyright ©: University of Illinois CS 241 Staff 7

1 – 3: Push
parameter (in
reverse order)

4 – 5: Library call
(puts syscall # in

CPU register)

6: Switch to kernel
mode (return

address saved on
stack)

7: Find system call
handler

8: Run handler
(index via table of

pointers to
syscall handles)

9: Return to user
mode

10: Return to user
program (via trap)

11: Clean up

count = read(fd, buffer, nbytes);

Examples of System Calls

  Examples
  getuid() //get the user ID
  fork() //create a child process
  exec() //executing a program

  Don’t mix system calls with standard library
calls
  Differences?
  Is printf() a system call?
  Is rand() a system call?

Copyright ©: University of Illinois CS 241 Staff 8

man syscalls

Major System Calls
Process Management
pid = fork() Create a child process identical to the parent

pid = waitpid(pid, &statloc, options) Wait for a child to terminate

s = execve(name, argv, environp) Replace a process’ core image

exit(status) Terminate process execution and return status

Copyright ©: University of Illinois CS 241 Staff 9

File Management
fd = open(file, how, ...) Open a file for reading, writing or both

s = close(fd) Close an open file

n = read(fd, buffer, nbytes) Read data from a file into a buffer

n = write(fd, buffer, nbytes) Write data from a buffer into a file

position = lseek(fd, offset, whence) Move the file pointer

s = stat(name, &buf) Get a file’s status information

Today

Directory and File System Management
s = mkdir(name, mode) Create a new directory

s = rmdir(name) Remove an empty directory

s = link(name, name) Create a new entry, name, pointing to name

s = unlink(name) Remove a directory entry

s = mount(special, name, flag) Mount a file system

s = umount(special) Unmount a file system

Major System Calls

Miscellaneous
s = chdir(dirname) Change the working directory

s = chmod(name, mode) Change a file’s protection bits

s = kill(pid, signal) Send a signal to a process

seconds = time(&seconds) Get the elapsed time since January 1, 1970

Copyright ©: University of Illinois CS 241 Staff 10

File System and I/O Related
System Calls

  A file system
  A means to organize, retrieve, and

updated data in persistent storage
  A hierarchical arrangement of directories
  Bookkeeping information (file metadata)

  File length, # bytes, modified timestamp, etc

  Unix file system
  Root file system starts with “/”

Copyright ©: University of Illinois CS 241 Staff 11

Why does the OS control I/O?

  Safety
  The computer must ensure that if a program has

a bug in it, then it doesn't crash or mess up
  The system
  Other programs that may be running at the same time

or later

  Fairness
  Make sure other programs have a fair use of

device

Copyright ©: University of Illinois CS 241 Staff 12

Basic Unix Concepts

  Input/Output – I/O
  Per-process table of I/O channels
  Table entries describe files, sockets, devices, pipes, etc.
  Table entry/index into table called “file descriptor”
  Unifies I/O interface

Copyright ©: University of Illinois CS 241 Staff 13

user space

pipe

file

socket Per-process file
descriptor

table

kernel system open file
table

Basic Unix Concepts

  Error Model
  errno variable

  Unix provides a globally accessible integer variable that contains an
error code number

  Return value
  0 on success
  -1 on failure for functions returning integer values
  NULL on failure for functions returning pointers

  Examples (see errno.h)
#define EPERM 1 /* Operation not permitted */
#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */
#define EINTR 4 /* Interrupted system call */
#define EIO 5 /* I/O error */

#define ENXIO 6 /* No such device or address */

Copyright ©: University of Illinois CS 241 Staff 14

System Calls for I/O

  Get information about a file
 int stat(const char* name, struct stat* buf);

  Open (and/or create) a file for reading, writing or both
int open (const char* name, in flags);

  Read data from one buffer to file descriptor
size_t read (int fd, void* buf, size_t cnt);

  Write data from file descriptor into buffer
size_t write (int fd, void* buf, size_t cnt);

  Close a file
int close(int fd);

Copyright ©: University of Illinois CS 241 Staff 15

System Calls for I/O

  They look like regular procedure calls but
are different
  A system call makes a request to the operating

system by trapping into kernel mode
  A procedure call just jumps to a procedure

defined elsewhere in your program
  Some library procedure calls may

themselves make a system call
  e.g., fopen() calls open()

Copyright ©: University of Illinois CS 241 Staff 16

File: Statistics

#include <sys/stat.h>
int stat(const char* name, struct stat* buf);
  Get information about a file
  Returns:

  0 on success
  -1 on error, sets errno

  Parameters:
  name: Path to file you want to use

  Absolute paths begin with “/”, relative paths do not
  buf: Statistics structure

  off_t st_size: Size in bytes
  time_t st_mtime: Date of last modification. Seconds since January 1,

1970
  Also
int fstat(int filedes, struct stat *buf);

Copyright ©: University of Illinois CS 241 Staff 17

Example - (stat())

#include <unistd.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
int main(int argc, char **argv) {

 struct stat fileStat;
 if(argc != 2)
 return 1;
 if(stat(argv[1], &fileStat) < 0)
 return 1;
 printf("Information for %s\n",argv[1]);
 printf("---------------------------\n");
 printf("File Size: \t\t%d bytes\n", fileStat.st_size);
printf("Number of Links: \t%d\n", fileStat.st_nlink);
 printf("File inode: \t\t%d\n", fileStat.st_ino);

Copyright ©: University of Illinois CS 241 Staff 18

Example - (stat())
 printf("File Permissions: \t");
 printf((S_ISDIR(fileStat.st_mode)) ? "d" : "-");
 printf((fileStat.st_mode & S_IRUSR) ? "r" : "-");

 printf((fileStat.st_mode & S_IWUSR) ? "w" : "-");
 printf((fileStat.st_mode & S_IXUSR) ? "x" : "-");
 printf((fileStat.st_mode & S_IRGRP) ? "r" : "-");
 printf((fileStat.st_mode & S_IWGRP) ? "w" : "-");
 printf((fileStat.st_mode & S_IXGRP) ? "x" : "-");
 printf((fileStat.st_mode & S_IROTH) ? "r" : "-");

 printf((fileStat.st_mode & S_IWOTH) ? "w" : "-");
 printf((fileStat.st_mode & S_IXOTH) ? "x" : "-");
 printf("\n\n"); printf("The file %s a symbolic link\n",
(S_ISLNK(fileStat.st_mode)) ? "is" : "is not");
 return 0;

}

Copyright ©: University of Illinois CS 241 Staff 19

Useful Macros: File types

  Is file a symbolic
link
  S_ISLNK

  Is file a regular file
  S_ISREG

  Is file a character
device
  S_ISCHR

  Is file a block
device
  S_ISBLK

  Is file a FIFO
  S_ISFIFO

  Is file a unix socket
  S_ISSOCK

Copyright ©: University of Illinois CS 241 Staff 20

Useful Macros: File Modes

  S_IRWXU
  read, write, execute/

search by owner

  S_IRUSR
  read permission, owner

  S_IWUSR
  write permission, owner

  S_IXUSR
  execute/search

permission, owner

  S_IRGRP
  read permission, group

  S_IRWXO
  read, write, execute/

search by others

Copyright ©: University of Illinois CS 241 Staff 21

Example - (stat())
Information for testfile.sh

File Size: 36 bytes

Number of Links: 1
File inode: 180055
File Permissions: -rwxr-xr-x

The file is not a symbolic link

Copyright ©: University of Illinois CS 241 Staff 22

File: Open

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open (const char* path, int flags [, int mode]);
  Open (and/or create) a file for reading, writing or both
  Returns:

  Return value ≥ 0 : Success - New file descriptor on success
  Return value = -1: Error, check value of errno

  Parameters:
  path: Path to file you want to use

  Absolute paths begin with “/”, relative paths do not

  flags: How you would like to use the file
  O_RDONLY: read only, O_WRONLY: write only, O_RDWR: read and write,

O_CREAT: create file if it doesn’t exist, O_EXCL: prevent creation if it already
exists

Copyright ©: University of Illinois CS 241 Staff 23

Example (open())

#include <fcntl.h>
#include <errno.h>
extern int errno;

main() {

 int fd;
 fd = open("foo.txt", O_RDONLY | O_CREAT);
 printf("%d\n", fd);
 if (fd=-1) {
 printf ("Error Number %d\n", errno);
 perror("Program");
 }

}

Copyright ©: University of Illinois CS 241 Staff 24

Argument: string
Output: the string, a colon, and a
description of the error condition
stored in errno

File: Close

#include <fcntl.h>
int close(int fd);
  Close a file

  Tells the operating system you are done with a file
descriptor

  Return:
  0 on success
  -1 on error, sets errno

  Parameters:
  fd: file descriptor

Copyright ©: University of Illinois CS 241 Staff 25

Example (close())

#include <fcntl.h>
main(){

 int fd1;

 if((fd1 = open(“foo.txt", O_RDONLY)) < 0){
 perror("c1");
 exit(1);
 }
 if (close(fd1) < 0) {

 perror("c1");
 exit(1);
 }
 printf("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 26

Example (close())

#include <fcntl.h>
main(){

 int fd1;

 if((fd1 = open(“foo.txt", O_RDONLY)) < 0){
 perror("c1");
 exit(1);
 }
 if (close(fd1) < 0) {

 perror("c1");
 exit(1);
 }
 printf("closed the fd.\n");

Copyright ©: University of Illinois CS 241 Staff 27

After close, can you still use the
file descriptor?

Why do we need to close a file?

File: Read

#include <fcntl.h>
size_t read (int fd, void* buf, size_t cnt);
  Read data from one buffer to file descriptor

  Read size bytes from the file specified by fd into the memory location
pointed to by buf

  Return: How many bytes were actually read
  Number of bytes read on success
  0 on reaching end of file
  -1 on error, sets errno
  -1 on signal interrupt, sets errno to EINTR

  Parameters:
  fd: file descriptor
  buf: buffer to read data from
  cnt: length of buffer

Copyright ©: University of Illinois CS 241 Staff 28

File: Read

size_t read (int fd, void* buf, size_t cnt);

  Things to be careful about
  buf needs to point to a valid memory location with length

not smaller than the specified size
  Otherwise, what could happen?

  fd should be a valid file descriptor returned from open()
to perform read operation
  Otherwise, what could happen?

  cnt is the requested number of bytes read, while the
return value is the actual number of bytes read
  How could this happen?

Copyright ©: University of Illinois CS 241 Staff 29

Example (read())

#include <fcntl.h>
main() {

 char *c;
 int fd, sz;

 c = (char *) malloc(100
 * sizeof(char));
 fd = open(“foo.txt",
 O_RDONLY);
 if (fd < 0) {
 perror("r1");
 exit(1);
 }

 sz = read(fd, c, 10);
 printf("called
 read(%d, c, 10).
 returned that %d
 bytes were
 read.\n", fd, sz);
 c[sz] = '\0';

 printf("Those bytes
 are as follows:
 %s\n", c);
 close(fd);

}

Copyright ©: University of Illinois CS 241 Staff 30

File: Write

#include <fcntl.h>
size_t write (int fd, void* buf, size_t cnt);
  Write data from file descriptor into buffer

  Writes the bytes stored in buf to the file specified by fd
  Return: How many bytes were actually written

  Number of bytes written on success
  0 on reaching end of file
  -1 on error, sets errno
  -1 on signal interrupt, sets errno to EINTR

  Parameters:
  fd: file descriptor
  buf: buffer to write data to
  cnt: length of buffer

Copyright ©: University of Illinois CS 241 Staff 31

File: Write

size_t write (int fd, void* buf, size_t cnt);

  Things to be careful about
  The file needs to be opened for write operations
  buf needs to be at least as long as specified by

cnt
  If not, what will happen?

  cnt is the requested number of bytes to write,
while the return value is the actual number of
bytes written
  How could this happen?

Copyright ©: University of Illinois CS 241 Staff 32

Example (write())

#include <fcntl.h>
main()
{

 int fd, sz;

 fd = open("out3",
 O_RDWR | O_CREAT |
 O_APPEND, 0644);
 if (fd < 0) {
 perror("r1");
 exit(1);
 }

 sz = write(fd, "cs241\n",
 strlen("cs241\n"));

 printf("called write(%d,
 \"cs360\\n\", %d).
 it returned %d\n",
 fd, strlen("cs360\n"),
 sz);

 close(fd);

}

Copyright ©: University of Illinois CS 241 Staff 33

File Pointers

  All open files have a "file pointer" associated
with them to record the current position for
the next file operation

  On open
  File pointer points to the beginning of the file

  After reading/write m bytes
  File pointer moves m bytes forward

Copyright ©: University of Illinois CS 241 Staff 34

File: Seek

#include <unistd.h>
off_t lseek(int fd, off_t offset, int whence);

  Explicitly set the file offset for the open file
  Return: Where the file pointer is

  the new offset, in bytes, from the beginning of the file
  -1 on error, sets errno, file pointer remains unchanged

  Parameters:
  fd: file descriptor
  offset: indicates relative or absolute location
  whence: How you would like to use lseek

  SEEK_SET, set file pointer to offset bytes from the beginning of the file
  SEEK_CUR, set file pointer to offset bytes from current location
  SEEK_END, set file pointer to offset bytes from the end of the file

Copyright ©: University of Illinois CS 241 Staff 35

File: Seek Examples

  Random access
  Jump to any byte in a file

  Move to byte #16
newpos = lseek(fd, 16, SEEK_SET);

  Move forward 4 bytes
newpos = lseek(fd, 4, SEEK_CUR);

  Move to 8 bytes from the end
newpos = lseek(fd, -8, SEEK_END);

Copyright ©: University of Illinois CS 241 Staff 36

Example (lseek())

c = (char *) malloc(100 *
sizeof(char));

fd = open(“foo.txt", O_RDONLY);
if (fd < 0) {

 perror("r1");
 exit(1);

}

sz = read(fd, c, 10);
printf("We have opened in1, and

called read(%d, c, 10).\n",
fd);

c[sz] = '\0';
printf("Those bytes are as

follows: %s\n", c);

i = lseek(fd, 0, SEEK_CUR);
printf("lseek(%d, 0, SEEK_CUR)

returns that the current
offset is %d\n\n", fd, i);

printf("now, we seek to the

beginning of the file and
call read(%d, c, 10)\n",
fd);

lseek(fd, 0, SEEK_SET);
sz = read(fd, c, 10);
c[sz] = '\0';
printf("The read returns the

following bytes: %s\n", c);
…

 Copyright ©: University of Illinois CS 241 Staff 37

Standard Input, Standard
Output and Standard Error

  Every process in Unix has three predefined file descriptors
  File descriptor 0 is standard input (STDIN)
  File descriptor 1 is standard output (STDOUT)
  File descriptor 2 is standard error (STDERR)

  Read from standard input,
  read(0, ...);

  Write to standard output
  write(1, ...);

  Two additional library functions
  printf();
  scanf();

Copyright ©: University of Illinois CS 241 Staff 38

I/O Library Calls
  Every system call has paired procedure calls from the

standard I/O library:

  System Call
  open
  close
  read/write

  lseek

  Standard I/O call (stdio.h)
  fopen
  fclose
  getchar/putchar, getc/

putc, fgetc/fputc,
fread/fwrite, gets/
puts, fgets/fputs,
scanf/printf, fscanf/
fprintf

  fseek

Copyright ©: University of Illinois CS 241 Staff 39

Stream Processing - fgetc()

int fgetc(FILE *stream);
  Read the next character from stream
  Return

  An unsigned char cast to an int
  EOF on end of file
  Error

int getchar(void);
  Read the next character from stdin

int getc(void);
  Similar to , but implemented as a macro, faster and

potentially unsafe
Copyright ©: University of Illinois CS 241 Staff 40

Similar functions for writing:
int fputc(int c, FILE *stream);
int putchar(int c);
int putc(int c, FILE *stream);

Stream Processing - fgets()

char *fgets(char *s, int size, FILE
*stream);

  Read in at most one less than size characters
from stream
  Stores characters in buffer pointed to by s.
  Reading stops after an EOF or a newline.
  If a newline is read, it is stored into the buffer.
  A '\0' is stored after the last character in the buffer.

  Return
  s on success
  NULL on error or on EOF and no characters read

Copyright ©: University of Illinois CS 241 Staff 41

Similar:
int fputs(const char *s, FILE *stream);

Stream Processing

char *gets(char *s);
  Reads a line from stdin
  NOTE: DO NOT USE

  Reading a line that overflows the array pointed to by s
causes undefined results.

  The use of is fgets() recommended

Copyright ©: University of Illinois CS 241 Staff 42

Stream Processing - fputs()

int fputs(const char *s, FILE *stream);
  Write the null-terminated string pointed to by s to

the stream pointed to by stream.
  The terminating null byte is not written

  Return
  Non-neg number on success
  EOF on error

char *puts(char *s);
  Write to stdout

  Appends a newline character

Copyright ©: University of Illinois CS 241 Staff 43

Example: (fgets()- fputs())

#include <stdio.h>
int main() {
 FILE * fp = fopen("test.txt", "r");
 char line[100];
 while(fgets(line, sizeof(line), fp) != NULL)

 fputs(line, stdout);
 fclose(fp);
 return 0;

}

Copyright ©: University of Illinois CS 241 Staff 44

Stream Processing - fscanf()

int scanf(const char *format, ...);
  Read from the standard input stream stdin

  Stores read characters in buffer pointed to by s.

  Return
  Number of successfully matched and assigned input items
  EOF on error

int fscanf(FILE *stream, const char *fmt, ...);
  Read from the named input stream

int sscanf(const char *s, const char *fmt, ...);
  Read from the string s

Copyright ©: University of Illinois CS 241 Staff 45

Example: (scanf())

  Input: 56789 56a72

#include <stdio.h>
int main() {
 int i;
 float x;
 char name[50];
 scanf("%2d%f %[0123456789]", &i, &x, name);

}

Copyright ©: University of Illinois CS 241 Staff 46

What are i, x, and name
after the call to
scanf()?

What will a subsequent call to
getchar()return?

Example: stdin

int x;
char st[31];

/* read first line of input */
printf("Enter an integer: ");
scanf("%d", &x);

/* read second line of input */
printf("Enter a line of text: ");
fgets(st, 31, stdin);

Copyright ©: University of Illinois CS 241 Staff 47

What will
this code
really do?

Example: stdin

int x;
char st[31];

/* read first line of input */
printf("Enter an integer: ");
scanf("%d", &x);

/* read second line of input */
printf("Enter a line of text: ");
fgets(st, 31, stdin);

Copyright ©: University of Illinois CS 241 Staff 48

What will
this code
really do?

Input is buffered, but scanf() did not read all of
the first line

Example: stdin

int x;
char st[31];
/* read first line */
printf("Enter an

integer: ");
scanf("%d", &x);
dump_line(stdin);
/* read second line */
printf("Enter a line of

text: ");
fgets(st, 31, stdin);

void dump_line(FILE *
fp) {
 int ch;
 while((ch = fgetc(fp))
 != EOF &&
 ch != '\n')
 /* null body */;
 }

Copyright ©: University of Illinois CS 241 Staff 49

Read and dump all
characters from input
buffer until a '\n'

after scanf()

