
Copyright ©: University of Illinois CS 241 Staff 1

Operating Systems
Orientation

CS 241
January 25, 2012

Objectives

  Explain the main purpose of operating systems and describe
milestones of OS evolution

  Explain fundamental machine concepts
  Instruction processing
  Memory hierarchy
  Interrupts
  I/O

  Explain fundamental OS concepts
  System calls
  Processes
  Synchronization
  Files

  Explain the POSIX standard (UNIX specification)

Copyright ©: University of Illinois CS 241 Staff 2

OS Structure

Copyright ©: University of Illinois CS 241 Staff 3 3

Firefox Second Life Yahoo
Chat GMail

Application Software

Network Hardware

Read/Write Standard
Output

Device
Control

File
System Communication

Operating System

Standard Operating System Interface

Machine Independent

Machine Specific

POSIX
The UNIX Interface Standard

Copyright ©: University of Illinois CS 241 Staff 4

Firefox Second Life Yahoo
Chat GMail

Application Software

Read/Write Standard
Output

Device
Control

File
System Communication

Unix

POSIX Standard Interface

What is an Operating System?

  It is an extended machine
  Hides the messy details that must be performed
  Presents user with a virtualized and simplified

abstraction of the machine, easier to use

  It is a resource manager
  Each program gets time with the resource
  Each program gets space on the resource

Copyright ©: University of Illinois CS 241 Staff 5

Machine-dependent layer

A Peek into Unix

Copyright ©: University of Illinois CS 241 Staff 6

Application

Portable OS Layer

Libraries User space/level

Kernel space/level
•  User/kernel modes are
 supported by hardware

• Some systems do not have
 clear user-kernel boundary

Machine-dependent layer

Application

Copyright ©: University of Illinois CS 241 Staff 7

Applications
(Firefox, Emacs, grep)

Portable OS Layer

Libraries

•  Written by programmer
•  Compiled by

programmer
•  Use function calls

Machine-dependent layer

Unix: Libraries

Copyright ©: University of Illinois CS 241 Staff 8

Application

Portable OS Layer

Libraries (e.g., stdio.h)

•  Provided pre-compiled
•  Defined in headers
•  Input to linker (compiler)
•  Invoked like functions
•  May be “resolved”

when program is loaded

Machine-dependent layer

Typical Unix OS Structure

Copyright ©: University of Illinois CS 241 Staff 9

Application

Portable OS Layer

Libraries

•  System calls (read,
open..)

•  All “high-level” code

Machine-dependent layer

Typical Unix OS Structure

Copyright ©: University of Illinois CS 241 Staff 10

Application

Portable OS Layer

Libraries •  Bootstrap
•  System initialization
•  Interrupt and exception
•  I/O device driver
•  Memory management
•  Kernel/user mode

switching
•  Processor management

History of Computer
Generations

  Pre-computing generation 1792 - 1871
  Charles Babbage’s “Analytical Engine”
  Purely mechanical
  Designed, but never actually built

  Required high-precision gears/cogs that didn’t exist yet

  A man before his time
  When this works, we’ll need software!
  First programming language
  World’s first programmer: Ada Lovelace

Copyright ©: University of Illinois CS 241 Staff 11

History of Computer
Generations

  Pre-computing generation 1792 – 1871
  First generation 1945 – 1955

  Vacuum tubes, relays, plug boards
  Seconds per operation!

  Focus on numerical calculations

  No programming language
  Everything done using pure machine language or wiring electrical

circuits!

  No operating system
  Sign up for your time slot!

  Progress: Punch cards!

Copyright ©: University of Illinois CS 241 Staff 12

History of Computer
Generations

  Pre-computing generation 1792 – 1871
  First generation 1945 – 1955
  Second generation 1955 - 1965

  Transistors, mainframes
  Large human component

Copyright ©: University of Illinois CS 241 Staff 13

History of Operating Systems

  Problem: a lot of time wasted by operators walking around machine
room

  One solution: An early “batch system” by IBM
  bring cards to 1401
  read cards to tape
  put tape on 7094 which does computing
  put tape on 1401 which prints output

Copyright ©: University of Illinois CS 241 Staff 14

History of Computer
Generations

  Pre-computing generation 1792 – 1871
  First generation 1945 – 1955
  Second generation 1955 - 1965

  Transistors, mainframes
  Large human component
  Solution: Batched jobs

Copyright ©: University of Illinois CS 241 Staff 15

History of Computer
Generations

  Pre-computing generation 1792 – 1871
  First generation 1945 – 1955
  Second generation 1955 – 1965
  Third generation 1965 – 1980

  Integrated circuits and multiprogramming
  IBM’s New model: all software and OS must work on all

platforms
  A beast!

  Progress: Multiprogramming
  Keep the CPU busy

Copyright ©: University of Illinois CS 241 Staff 16

History of Operating Systems

  Multiprogramming/timesharing system
  Three jobs in memory – 3rd generation

Copyright ©: University of Illinois CS 241 Staff 17

Memory
Management

Process
Management

History of Computer
Generations

  Pre-computing generation 1792 – 1871
  First generation 1945 – 1955
  Second generation 1955 – 1965
  Third generation 1965 – 1980

  Integrated circuits and multiprogramming
  IBM’s New model: all software and OS must work on all

platforms
  Progress: Multiprogramming and timesharing
  Progress: Spooling

  Always have something ready to run

  MULTICS + minicomputers == UNIX!

Copyright ©: University of Illinois CS 241 Staff 18

History of Computer
Generations

  Pre-computing generation 1792 – 1871
  First generation 1945 – 1955
  Second generation 1955 – 1965
  Third generation 1965 – 1980
  Fourth generation 1980 – present

  Personal computers
  Multi-processors
  Phones
  …

Copyright ©: University of Illinois CS 241 Staff 19

Computer Hardware Review

  Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 20

Bus

Monitor
The “Brains”

Computer Hardware Review

  Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 21

CPU

Bus

Monitor

Computer
operation and
data processing

Computer Hardware Review

  Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 22

Memory

Bus

Monitor

CPU

Stores data
and
programs

Communication
between CPU,
Memory and I/O

Early Pentium system

Copyright ©: University of Illinois CS 241 Staff 23

CPU, From CS231

  Fetch instruction from code memory
  Fetch operands from data memory
  Perform operation (and store result)
  (Check interrupt line)
  Go to next instruction

  'Conventional CPU'
(Ignore pipeline, optimization complexities)

Copyright ©: University of Illinois CS 241 Staff 24

CPU Registers

  Fetch instruction from code memory
  Fetch operands from data memory
  Perform operation (and store result)
  Go to next instruction

  Note: CPU must maintain certain state
  Current instructions to fetch (program counter)
  Location of code memory segment
  Location of data memory segment

Copyright ©: University of Illinois CS 241 Staff 25

CPU Register Examples

  Hold instruction operands
  Point to start of

  Code segment (executable instructions)
  Data segment (static/global variables)
  Stack segment (execution stack data)

  Point to current position of
  Instruction pointer
  Stack pointer

Copyright ©: University of Illinois CS 241 Staff 26

CPU Register Examples

  Hold instruction operands
  Point to start of

  Code segment
  Data segment
  Stack segment

  Point to current position of
  Instruction pointer
  Stack pointer

  Why stack?

Copyright ©: University of Illinois CS 241 Staff 27

Command-line arguments
and environment variables

Uninitialized static data

Initialized static data

Program text (code
segment)

Sample Layout for program
image in main memory

Copyright ©: University of Illinois CS 241 Staff 28

Processes have three
segments: text, data, stack

stack

heap
Allocations from malloc family

Activation record for function calls
(return address, parameters,
saved registers, automatic variables

argc, argv, environment High address

Low address

Memory Hierarchy

  Leverage locality of reference

Copyright ©: University of Illinois CS 241 Staff 29

1 KB

128 MB

4 GB

1TB

10 TB

1.  Decreasing
cost per bit

2.  Increasing
capacity

3.  Increasing
access time

4.  Decreasing
frequency
of access

Computer Hardware Review

  Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 30

Bus Memory I/O
Devices

Bus

Monitor

CPU I/O
Devices

I/O
Devices

I/O
Devices

Move data
between
computer and
external
environment

I/O Device Access

  System Calls
  Application makes a system call reading from or writing to

a device
  Kernel blocks application
  Kernel translates request to specific driver
  Driver starts I/O
  Polls device for completion

  Or waits for interrupt from device
  Kernel obtains results, un-blocks application

Copyright ©: University of Illinois CS 241 Staff 31

I/O Interrupt Mechanism

1.  Application writes into device registers, Controller starts device
2.  When done, device controller signals interrupt controller
3.  Interrupt controller asserts pin on CPU
4.  Interrupt controller puts I/O device number on bus to CPU

Copyright ©: University of Illinois CS 241 Staff 32

(a)" (b)"

Operating System Concepts

  Shared resources
  I have B KB of memory, but need 2B KB
  I have N processes trying to access the disk at

the same time
  How would you control access to resources?

  Challenges
  Who gets to use the resources?
  How do you control fair use of the resources

over time?
  Deadlock

Copyright ©: University of Illinois CS 241 Staff 33

Operating System Concepts

  Process
  An executable instance

of a program
  Only one process can

use a (single-core)
CPU at a time

  A process tree
  A created two child

processes, B and C
  B created three child

processes, D, E, and F

Copyright ©: University of Illinois CS 241 Staff 34

A

B C

E F D

Z

Operating System Concepts

  How would you switch CPU execution from one
process to another?

  Solution: Context Switching
  Store/restore state on CPU, so execution can be resumed

from same point later in time
  Triggers: multitasking, interrupt handling, user/kernel

mode switching
  Involves: Saving/loading registers and other state into a
“process control block” (PCB)

  PCBs stored in kernel memory

Copyright ©: University of Illinois CS 241 Staff 35

Operating System Concepts

  Context Switching
  What are the costs involved?

Copyright ©: University of Illinois CS 241 Staff 36

Item Time Scaled Time in Human Terms
(2 billion times slower)

Processor cycle 0.5 ns (2 GHz) 1 s
Cache access 1 ns (1 GHz) 2 s
Memory access 15 ns 30 s
Context switch 5,000 ns (5 micros) 167 m
Disk access 7,000,000 ns (7 ms) 162 days
System quanta 100,000,000 (100 ms) 6.3 years

Operating System Concepts

  Another challenge: Deadlock
  Set of actions waiting for each other to finish

  Example:
  Process A has lock on file 1, wants to acquire lock on file 2
  Process B has a lock on file 2, wants to acquire lock on file 1

Copyright ©: University of Illinois CS 241 Staff 37

(a) A potential deadlock (b) An actual deadlock

Operating System Concepts

  Inter-process Communication
  Now process A needs to exchange information

with process B
  How would you enable communication between

processes?

Copyright ©: University of Illinois CS 241 Staff 38

A B
Pipe

A B

Shared Memory

Next up

  MP1 released
  Discussion sections tomorrow
  Friday: System calls

Copyright ©: University of Illinois CS 241 Staff 39

Summary

  Resource Manager
  Hardware independence
  Virtual Machine Interface
  POSIX
  Concurrency & Deadlock

Copyright ©: University of Illinois CS 241 Staff 40

