
Copyright ©: University of Illinois CS 241 Staff 1

Operating Systems
Orientation

CS 241
January 25, 2012

Objectives

  Explain the main purpose of operating systems and describe
milestones of OS evolution

  Explain fundamental machine concepts
  Instruction processing
  Memory hierarchy
  Interrupts
  I/O

  Explain fundamental OS concepts
  System calls
  Processes
  Synchronization
  Files

  Explain the POSIX standard (UNIX specification)

Copyright ©: University of Illinois CS 241 Staff 2

OS Structure

Copyright ©: University of Illinois CS 241 Staff 3 3

Firefox Second Life Yahoo
Chat GMail

Application Software

Network Hardware

Read/Write Standard
Output

Device
Control

File
System Communication

Operating System

Standard Operating System Interface

Machine Independent

Machine Specific

POSIX
The UNIX Interface Standard

Copyright ©: University of Illinois CS 241 Staff 4

Firefox Second Life Yahoo
Chat GMail

Application Software

Read/Write Standard
Output

Device
Control

File
System Communication

Unix

POSIX Standard Interface

What is an Operating System?

  It is an extended machine
  Hides the messy details that must be performed
  Presents user with a virtualized and simplified

abstraction of the machine, easier to use

  It is a resource manager
  Each program gets time with the resource
  Each program gets space on the resource

Copyright ©: University of Illinois CS 241 Staff 5

Machine-dependent layer

A Peek into Unix

Copyright ©: University of Illinois CS 241 Staff 6

Application

Portable OS Layer

Libraries User space/level

Kernel space/level
•  User/kernel modes are
 supported by hardware

• Some systems do not have
 clear user-kernel boundary

Machine-dependent layer

Application

Copyright ©: University of Illinois CS 241 Staff 7

Applications
(Firefox, Emacs, grep)

Portable OS Layer

Libraries

•  Written by programmer
•  Compiled by

programmer
•  Use function calls

Machine-dependent layer

Unix: Libraries

Copyright ©: University of Illinois CS 241 Staff 8

Application

Portable OS Layer

Libraries (e.g., stdio.h)

•  Provided pre-compiled
•  Defined in headers
•  Input to linker (compiler)
•  Invoked like functions
•  May be “resolved”

when program is loaded

Machine-dependent layer

Typical Unix OS Structure

Copyright ©: University of Illinois CS 241 Staff 9

Application

Portable OS Layer

Libraries

•  System calls (read,
open..)

•  All “high-level” code

Machine-dependent layer

Typical Unix OS Structure

Copyright ©: University of Illinois CS 241 Staff 10

Application

Portable OS Layer

Libraries •  Bootstrap
•  System initialization
•  Interrupt and exception
•  I/O device driver
•  Memory management
•  Kernel/user mode

switching
•  Processor management

History of Computer
Generations

  Pre-computing generation 1792 - 1871
  Charles Babbage’s “Analytical Engine”
  Purely mechanical
  Designed, but never actually built

  Required high-precision gears/cogs that didn’t exist yet

  A man before his time
  When this works, we’ll need software!
  First programming language
  World’s first programmer: Ada Lovelace

Copyright ©: University of Illinois CS 241 Staff 11

History of Computer
Generations

  Pre-computing generation 1792 – 1871
  First generation 1945 – 1955

  Vacuum tubes, relays, plug boards
  Seconds per operation!

  Focus on numerical calculations

  No programming language
  Everything done using pure machine language or wiring electrical

circuits!

  No operating system
  Sign up for your time slot!

  Progress: Punch cards!

Copyright ©: University of Illinois CS 241 Staff 12

History of Computer
Generations

  Pre-computing generation 1792 – 1871
  First generation 1945 – 1955
  Second generation 1955 - 1965

  Transistors, mainframes
  Large human component

Copyright ©: University of Illinois CS 241 Staff 13

History of Operating Systems

  Problem: a lot of time wasted by operators walking around machine
room

  One solution: An early “batch system” by IBM
  bring cards to 1401
  read cards to tape
  put tape on 7094 which does computing
  put tape on 1401 which prints output

Copyright ©: University of Illinois CS 241 Staff 14

History of Computer
Generations

  Pre-computing generation 1792 – 1871
  First generation 1945 – 1955
  Second generation 1955 - 1965

  Transistors, mainframes
  Large human component
  Solution: Batched jobs

Copyright ©: University of Illinois CS 241 Staff 15

History of Computer
Generations

  Pre-computing generation 1792 – 1871
  First generation 1945 – 1955
  Second generation 1955 – 1965
  Third generation 1965 – 1980

  Integrated circuits and multiprogramming
  IBM’s New model: all software and OS must work on all

platforms
  A beast!

  Progress: Multiprogramming
  Keep the CPU busy

Copyright ©: University of Illinois CS 241 Staff 16

History of Operating Systems

  Multiprogramming/timesharing system
  Three jobs in memory – 3rd generation

Copyright ©: University of Illinois CS 241 Staff 17

Memory
Management

Process
Management

History of Computer
Generations

  Pre-computing generation 1792 – 1871
  First generation 1945 – 1955
  Second generation 1955 – 1965
  Third generation 1965 – 1980

  Integrated circuits and multiprogramming
  IBM’s New model: all software and OS must work on all

platforms
  Progress: Multiprogramming and timesharing
  Progress: Spooling

  Always have something ready to run

  MULTICS + minicomputers == UNIX!

Copyright ©: University of Illinois CS 241 Staff 18

History of Computer
Generations

  Pre-computing generation 1792 – 1871
  First generation 1945 – 1955
  Second generation 1955 – 1965
  Third generation 1965 – 1980
  Fourth generation 1980 – present

  Personal computers
  Multi-processors
  Phones
  …

Copyright ©: University of Illinois CS 241 Staff 19

Computer Hardware Review

  Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 20

Bus

Monitor
The “Brains”

Computer Hardware Review

  Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 21

CPU

Bus

Monitor

Computer
operation and
data processing

Computer Hardware Review

  Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 22

Memory

Bus

Monitor

CPU

Stores data
and
programs

Communication
between CPU,
Memory and I/O

Early Pentium system

Copyright ©: University of Illinois CS 241 Staff 23

CPU, From CS231

  Fetch instruction from code memory
  Fetch operands from data memory
  Perform operation (and store result)
  (Check interrupt line)
  Go to next instruction

  'Conventional CPU'
(Ignore pipeline, optimization complexities)

Copyright ©: University of Illinois CS 241 Staff 24

CPU Registers

  Fetch instruction from code memory
  Fetch operands from data memory
  Perform operation (and store result)
  Go to next instruction

  Note: CPU must maintain certain state
  Current instructions to fetch (program counter)
  Location of code memory segment
  Location of data memory segment

Copyright ©: University of Illinois CS 241 Staff 25

CPU Register Examples

  Hold instruction operands
  Point to start of

  Code segment (executable instructions)
  Data segment (static/global variables)
  Stack segment (execution stack data)

  Point to current position of
  Instruction pointer
  Stack pointer

Copyright ©: University of Illinois CS 241 Staff 26

CPU Register Examples

  Hold instruction operands
  Point to start of

  Code segment
  Data segment
  Stack segment

  Point to current position of
  Instruction pointer
  Stack pointer

  Why stack?

Copyright ©: University of Illinois CS 241 Staff 27

Command-line arguments
and environment variables

Uninitialized static data

Initialized static data

Program text (code
segment)

Sample Layout for program
image in main memory

Copyright ©: University of Illinois CS 241 Staff 28

Processes have three
segments: text, data, stack

stack

heap
Allocations from malloc family

Activation record for function calls
(return address, parameters,
saved registers, automatic variables

argc, argv, environment High address

Low address

Memory Hierarchy

  Leverage locality of reference

Copyright ©: University of Illinois CS 241 Staff 29

1 KB

128 MB

4 GB

1TB

10 TB

1.  Decreasing
cost per bit

2.  Increasing
capacity

3.  Increasing
access time

4.  Decreasing
frequency
of access

Computer Hardware Review

  Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff 30

Bus Memory I/O
Devices

Bus

Monitor

CPU I/O
Devices

I/O
Devices

I/O
Devices

Move data
between
computer and
external
environment

I/O Device Access

  System Calls
  Application makes a system call reading from or writing to

a device
  Kernel blocks application
  Kernel translates request to specific driver
  Driver starts I/O
  Polls device for completion

  Or waits for interrupt from device
  Kernel obtains results, un-blocks application

Copyright ©: University of Illinois CS 241 Staff 31

I/O Interrupt Mechanism

1.  Application writes into device registers, Controller starts device
2.  When done, device controller signals interrupt controller
3.  Interrupt controller asserts pin on CPU
4.  Interrupt controller puts I/O device number on bus to CPU

Copyright ©: University of Illinois CS 241 Staff 32

(a)" (b)"

Operating System Concepts

  Shared resources
  I have B KB of memory, but need 2B KB
  I have N processes trying to access the disk at

the same time
  How would you control access to resources?

  Challenges
  Who gets to use the resources?
  How do you control fair use of the resources

over time?
  Deadlock

Copyright ©: University of Illinois CS 241 Staff 33

Operating System Concepts

  Process
  An executable instance

of a program
  Only one process can

use a (single-core)
CPU at a time

  A process tree
  A created two child

processes, B and C
  B created three child

processes, D, E, and F

Copyright ©: University of Illinois CS 241 Staff 34

A

B C

E F D

Z

Operating System Concepts

  How would you switch CPU execution from one
process to another?

  Solution: Context Switching
  Store/restore state on CPU, so execution can be resumed

from same point later in time
  Triggers: multitasking, interrupt handling, user/kernel

mode switching
  Involves: Saving/loading registers and other state into a
“process control block” (PCB)

  PCBs stored in kernel memory

Copyright ©: University of Illinois CS 241 Staff 35

Operating System Concepts

  Context Switching
  What are the costs involved?

Copyright ©: University of Illinois CS 241 Staff 36

Item Time Scaled Time in Human Terms
(2 billion times slower)

Processor cycle 0.5 ns (2 GHz) 1 s
Cache access 1 ns (1 GHz) 2 s
Memory access 15 ns 30 s
Context switch 5,000 ns (5 micros) 167 m
Disk access 7,000,000 ns (7 ms) 162 days
System quanta 100,000,000 (100 ms) 6.3 years

Operating System Concepts

  Another challenge: Deadlock
  Set of actions waiting for each other to finish

  Example:
  Process A has lock on file 1, wants to acquire lock on file 2
  Process B has a lock on file 2, wants to acquire lock on file 1

Copyright ©: University of Illinois CS 241 Staff 37

(a) A potential deadlock (b) An actual deadlock

Operating System Concepts

  Inter-process Communication
  Now process A needs to exchange information

with process B
  How would you enable communication between

processes?

Copyright ©: University of Illinois CS 241 Staff 38

A B
Pipe

A B

Shared Memory

Next up

  MP1 released
  Discussion sections tomorrow
  Friday: System calls

Copyright ©: University of Illinois CS 241 Staff 39

Summary

  Resource Manager
  Hardware independence
  Virtual Machine Interface
  POSIX
  Concurrency & Deadlock

Copyright ©: University of Illinois CS 241 Staff 40

