Operating Systems
Orientation

CS 241
January 25, 2012

Copyright ©: University of Illinois CS 241 Staff

Objectives

Explain the main purpose of operating systems and describe
milestones of OS evolution

Explain fundamental machine concepts
o Instruction processing
o Memory hierarchy

o Interrupts
o 1/0

Explain fundamental OS concepts
o System calls

o Processes

o Synchronization

o Files

Explain the POSIX standard (UNIX specification)

Copyright ©: University of Illinois CS 241 Staff 2]

[OS Structure]

Application Software

POSIX
[The UNIX Interface Standard

|

Application Software

Copyright ©: University of Illinois CS 241 Staff

POSIX Standard Interface

Unix

[What Is an Operating System??

It is an extended machine
o Hides the messy details that must be performed

o Presents user with a virtualized and simplified
abstraction of the machine, easier to use

It is a resource manager
o Each program gets time with the resource
o Each program gets space on the resource

Copyright ©: University of Illinois CS 241 Staff

A Peek into Unix

Application

Libraries User space/level

Kernel space/level

Portable OS Layer

 User/kernel modes are
supported by hardware

Machine-dependent layer

Some systems do not have
clear user-kernel boundary

Copyright ©: University of Illinois CS 241 Staff 6]

Application

Applications
(Firefox, Emacs, grep)

Libraries

Written by programmer
Compiled by
programmer

Use function calls

Portable OS Layer

Machine-dependent layer

Copyright ©: University of Illinois CS 241 Staff 7]

Unix: Libraries

Application

Libraries (e.g., stdio.h) =_

Portable OS Layer

Provided pre-compiled
Defined in headers

Input to linker (compiler)

Invoked like functions
May be “resolved”

when program is loaded

Machine-dependent layer

Copyright ©: University of Illinois CS 241 Staff

Typical Unix OS Structure

Application

Libraries

Portable OS Layer

Machine-dependent layer

T
T~

System calls (read,
open..)
All “high-level” code

Copyright ©: University of Illinois CS 241 Staff

Typical Unix OS Structure

Application

Libraries

Portable OS Layer

/

Machine-dependent layer

Bootstrap
System initialization

Interrupt and exception

I/O device driver
Memory management
Kernel/user mode
switching

Processor management

Copyright ©: University of Illinois CS 241 Staff

N

History of Computer
Generations

Pre-computing generation 1792 - 1871

O

@)

@)

Charles Babbage’ s “Analytical Engine”
Purely mechanical
Designed, but never actually built
Required high-precision gears/cogs that didn’ t exist yet

A man before his time
When this works, we’ Il need software!
First programming language
World’ s first programmer: Ada Lovelace

Copyright ©: University of Illinois CS 241 Staff

History of Computer
Generations

First generation 1945 — 1955

@)

@)

Vacuum tubes, relays, plug boards

Seconds per operation!
Focus on numerical calculations
No programming language
Everything done using pure machine language or wiring electrical
circuits!
No operating system
Sign up for your time slot!

Progress: Punch cards!

Copyright ©: University of Illinois CS 241 Staff

History of Computer
Generations

Second generation 1955 - 1965

Transistors, mainframes
Large human component

Copyright ©: University of Illinois CS 241 Staff

[History of Operating Systems

System
drive Input tape Output
tape ¢ \ tape

Printer

=
O
0 O

d
(UG

1401

g a0
(TN 0G

7094

1401

Problem: a lot of time wasted by operators walking around machine
room

One solution: An early “batch system” by IBM

o bring cards to 1401

o read cards to tape

o put tape on 7094 which does computing

o puttape on 1401 which prints output

Copyright ©: University of Illinois CS 241 Staff 14]

History of Computer
Generations

Second generation 1955 - 1965

o Transistors, mainframes

/ $END

Data for program

o Large human component

o Solution: Batched jobs /SRUN

Fortran Program

|
/$FORTRAN

rJOB 10,6610802, MARVIN TANENBAUM

Copyright ©: University of Illinois CS 241 Staff

History of Computer
Generations

Third generation 1965 — 1980

o Integrated circuits and multiprogramming

o IBM’s New model: all software and OS must work on all
platforms
A beast!

o Progress: Multiprogramming
Keep the CPU busy

Copyright ©: University of Illinois CS 241 Staff

[History of Operating Systems

— Job 3

Memory
Manageme Job 2
Job 1
Process Operating
Manageme system

Memory
partitions

Multiprogramming/timesharing system
o Three jobs in memory — 3rd generation

Copyright ©: University of Illinois CS 241 Staff

History of Computer
Generations

Third generation 1965 — 1980

o Integrated circuits and multiprogramming

o IBM’s New model: all software and OS must work on all
platforms

Progress: Multiprogramming and timesharing

Progress: Spooling
Always have something ready to run

o MULTICS + minicomputers == UNIXI!

Copyright ©: University of Illinois CS 241 Staff

History of Computer
Generations

Fourth generation 1980 — present

Personal computers
Multi-processors
Phones

Copyright ©: University of Illinois CS 241 Staff

Computer Hardware Review

Monitor

The “Brains” Hard

Keyboard dizllsgfi)\//e disk drive
5 /fﬁ

C‘% | (EeE==meem) | 0oona

: Floppy Hard

CPU Memory deo Reyboard disk disk
B controller controller

e

Bus

Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff

Computer Hardware Review

Monitor
Hard
Keyboard dizllsgfi)\//e disk drive
Computer 5 D ©
operation and 2 L@am%; == 0oooo
data processing
"
: Floppy Hard
Video Keyboard . :
CPU Memory disk disk
controller controller T sorfrollar
Bus

Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff

Computer Hardware Review

Communication
between CPU,
Memory and I/O

Monitor
Hard
Keyboard dizll?gfi)\//e disk drive
Stores data o i
and : @E@@é == noooo
programs
: Floppy Hard
Video Keyboard . :
CPU Memo disk disk
ry controller controller T sorfrollar
Bus

Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff

Early Pentium system

Cache bus Local bus Memory bus

Level 2 PCl A l Main
cache -} GRU {- bridge memory

\
[B
A PCl hiis
< —
-1 U I
Graphics
SCSI USB I_SA <:> IDE adaptor Available
g bridge disk * PClI slot
& = >~ Mon-
itor
Mouse|| Key-
board ISA bus
¢ (11 N
I I |
Sound . ;
Modem Printer Available
card ISA slot

Copyright ©: University of Illinois CS 241 Staff

[CPU, From CS231

Fetch instruction from code memory
Fetch operands from data memory
Perform operation (and store result)
(Check interrupt line)

Go to next instruction

'Conventional CPU'
(Ignore pipeline, optimization complexities)

Copyright ©: University of Illinois CS 241 Staff

CPU Registers

Fetch instruction from code memory
Fetch operands from data memory
Perform operation (and store result)
Go to next instruction

Note: CPU must maintain certain state

o Current instructions to fetch (program counter)
o Location of code memory segment

o Location of data memory segment

Copyright ©: University of Illinois CS 241 Staff

CPU Register Examples

Hold instruction operands

Point to start of

o Code segment (executable instructions)
o Data segment (static/global variables)

o Stack segment (execution stack data)

Point to current position of
o Instruction pointer
o Stack pointer

Copyright ©: University of Illinois CS 241 Staff

CPU Register Examples

Hold instruction operands

Point to start of
o Code segment
o Data segment

o Stack segment

Point to current position of
o Instruction pointer

o Stack pointer
Why stack?

Copyright ©: University of Illinois CS 241 Staff

Sample Layout for program
Image In main memory

Command-line arguments
and environment variables

High address “— argc, argv, environment

«— Activation record for function calls
1 (return address, parameters,
saved registers, automatic variables

stack

T

heap

o _ “— Allocations from malloc family
Uninitialized static data

Initialized static data Processes have three
segments: text, data, stack

Program text (code

Low address e

Copyright ©: University of Illinois CS 241 Staff 28]

Memory Hierarchy

Leverage locality of reference

Typical access time

Decreasing T ——m
. sSecC

cost per bit cgisters
|ncreasing 2 nsec Cache
capacity 10 nsec Main memory
Increasin

. 9 10 msec Magnetic disk
access time
Decreasing 100 sec Magnetic tape
frequency
of access

Copyright ©: University of Illinois CS 241 Staff

Typical capacity

1 KB
128 MB
4 GB
1TB

10 TB

Computer Hardware Review

Monitor

Move data Hard
between Keyboard dizll?gfi)\//e disk drive
computer and
external == ooooo
environment
/O /O /O /O
R ety Devices Devices Devices Devices
Bus

Components of a simple personal computer

Copyright ©: University of Illinois CS 241 Staff

/O Device Access

System Calls

o Application makes a system call reading from or writing to
a device

Kernel blocks application
Kernel translates request to specific driver
Driver starts 1/O

Polls device for completion
Or waits for interrupt from device

o Kernel obtains results, un-blocks application

O O O O

Copyright ©: University of Illinois CS 241 Staff 31]

/O Interrupt Mechanism

Disk drive

? 7 Current instruction

I Next instruction w_
cPU | 3| Interrupt Disk
controller controller 3. Return
1. Interrupt
] \ /
2. Dispatch 1
(a) (b) to handler \1‘
a
Interrupt handler 7

Application writes into device registers, Controller starts device
When done, device controller signals interrupt controller
Interrupt controller asserts pin on CPU

Interrupt controller puts 1/O device number on bus to CPU

Copyright ©: University of Illinois CS 241 Staff 32]

Operating System Concepts

Shared resources

O

O

®)

| have B KB of memory, but need 2B KB

| have N processes trying to access the disk at
the same time

How would you control access to resources?

Challenges

O

O

Who gets to use the resources?

How do you control fair use of the resources
over time?

Deadlock

Copyright ©: University of Illinois CS 241 Staff

Operating System Concepts

Process

o An executable instance e @
of a program

o Only one process can
use a (single-core) e e
CPU at a time

A process tree

o A created two child e G G
processes, B and C

o B created three child

processes, D, E, and F

Copyright ©: University of Illinois CS 241 Staff 34]

Operating System Concepts

How would you switch CPU execution from one
process to another?

Solution: Context Switching

o Store/restore state on CPU, so execution can be resumed
from same point later in time

o Triggers: multitasking, interrupt handling, user/kernel
mode switching

o Involves: Saving/loading registers and other state into a
“process control block” (PCB)

o PCBs stored in kernel memory

Copyright ©: University of Illinois CS 241 Staff 35]

Operating System Concepts

Context Switching
o What are the costs involved?

ltem Time Scaled Time in Human Terms
(2 billion times slower)

Processor cycle 0.5 ns (2 GHz) 1s

Cache access 1 ns (1 GHz) 2s

Memory access 15 ns 30s

Context switch 5,000 ns (5 micros) 167 m

Disk access 7,000,000 ns (7 ms) 162 days

System quanta 100,000,000 (100 ms) | 6.3 years

Copyright ©: University of Illinois CS 241 Staff

Operating System Concepts
] Bl

e W el el il
=L ol bt el E
1 r
(a) A potential deadlock (b) An actual deadlock

Another challenge: Deadlock
o Set of actions waiting for each other to finish
Example:

o Process A has lock on file 1, wants to acquire lock on file 2

o Process B has a lock on file 2, wants to acquire lock on file 1
Copyright ©: University of Illinois CS 241 Staff 37 1

Operating System Concepts

Inter-process Communication

o Now process A needs to exchange information
with process B

o How would you enable communication between

rocesses?
P Shared Memory

=0 ©

Copyright ©: University of Illinois CS 241 Staff

Next up

MP1 released
Discussion sections tomorrow
Friday: System calls

Copyright ©: University of Illinois CS 241 Staff

[Summary

Resource Manager
Hardware independence
Virtual Machine Interface

POSIX
Concurrency & Deadlock

Copyright ©: University of Illinois CS 241 Staff

