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C  Introduction (part 2) 



Announcements 

  Anonymous feedback 

  Honors section 

  Registration 
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  Pointers 
  Memory allocation 
  Arrays 
  Strings 

Theme: 
how memory 
really works 
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Review: New concepts in C 



Pointers 
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Variables 

10,000 

10,002 

10,008 

10,010 

10,012 

… 

Value1 

Value2 

Value3 

Value4 

Value5 

x 

y 

z 

p 

d 

Memory 
Address 

Name 

Value 

int   x; 
double  y; 
float  z; 
double*  p; 
int   d; 

Type of each variable 
(also determines size) 
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The “&” Operator: 
Reads “Address of” 

10,000 

10,002 

10,008 

10,010 

10,012 

… 

Value1 

Value2 

Value3 

Value4 

Value5 

x 

y 

z 

p 

d 

Name 

Value 

&y  
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Pointers 

10,000 

10,002 

10,008 

10,010 

10,012 

… 

Value1 

Value2 

Value3 

10,002 

Value5 

x 

y 

z 

p 

d 

Name 

Value 

A pointer is a variable 
whose value is the 
address of another 
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*p = “Variable p points to” 

10,000 

10,002 

10,008 

10,010 

10,012 

… 

Value1 

Value2 

Value3 

10,002 

Value5 

x 

y 

z 

p 

d 

Name 

Value 

A pointer is a variable 
whose value is the 
address of another 

*p  
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Memory allocation 
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Memory allocation 

  Two ways to dynamically allocate 
memory 

  Stack 
  Named variables in functions 
  Allocated for you when you call a function 
  Deallocated for you when function returns 

  Heap 
  Memory on demand 
  You are responsible for all allocation and 

deallocation 
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Sample layout for program 
image in main memory 

Command-line arguments 
and environment variables 

Uninitialized static data 

Initialized static data 

Program text 

Processes have three 
segments: text, data, stack 

stack 

heap 
Allocations from malloc family 

Activation record for function calls 
(return address, parameters,  
saved registers, automatic variables) 

argc, argv, environment High address 

Low address 
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Allocating and deallocating 
heap memory 

  Dynamically allocating memory 
  Programmer explicitly requests space in memory 
  Space is allocated dynamically on the heap 
  E.g., using “malloc” in C, “new” in Java 

  Dynamically deallocating memory 
  Must reclaim or recycle memory that is never used again 
  To avoid (eventually) running out of memory 
  Either manual or via automatic “garbage collection” 
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Heap memory allocation 

  C++:  
  new and delete allocate memory for a 

whole object 

  C:  
  malloc and free deal with unstructured 

blocks of bytes 
  void* malloc(size_t size); 
  void free(void* ptr); 
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Example 

int* p; 
 
p = (int*) malloc(sizeof(int)); 
 
*p = 5; 
 
free(p); 

Cast to the 
right type 

How many bytes 
do you want? 
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Manual deallocation can lead 
to bugs 

  Dangling pointers 
  Programmer frees a region of memory 
  … but still has a pointer to it 
  Dereferencing pointer reads or writes nonsense values 
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int main(void) { 
 int *p; 
 p = malloc(sizeof(int)); 
 … 
 free(p); 
 … 
 printf(“%d\n”,*p); 

} 

May print 
nonsense 



Manual deallocation can lead 
to bugs 

  Memory leak 
  Programmer neglects to free unused region of memory 
  So, the space can never be allocated again 
  Eventually may consume all of the available memory 
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void f(void) { 
 int *d; 
 d = malloc(sizeof(int)); 

} 
 
int main(void) { 

 while (1) f(); 
} 

Eventually, 
malloc() 
returns 
NULL 



Manual deallocation can lead 
to bugs 

  Double free 
  Programmer mistakenly frees a region more than once 
  Leading to corruption of the heap data structure 
  … or premature destruction of a different object 
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int main(void) { 
 int *p, *q; 
 p = malloc(sizeof(int)); 
 … 
 free(p); 
 q = malloc(sizeof(int)); 
 free(p); 

} 

Might free 
space 
allocated by 
q! 



I’m hungry.  More bytes plz. 

int* p = (int*) malloc(10 * sizeof(int)); 

  Now I have space for 10 integers, laid 
out contiguously in memory.  What 
would be a good name for that...? 
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Arrays 
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Arrays 

  Contiguous block of memory  
  Fits one or more elements of some type 

  Two ways to allocate 
  named variable  
   int x[10]; 

  dynamic                        
   int* x = (int*) malloc(10*sizeof(int)); 
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Is there a 
difference? 



Arrays 

int p[5];  

p[0] 

p[1] 

p[2] 

p[3] 

p[4] 

Name of array (is a pointer) 

p 

Shorthand: 
*(p+1) is called p[1] 
*(p+2) is called p[2] 
etc.. 
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Adding integers to pointers 
(pointer arithmetic) 

  Compiler uses the type information 
  long *p; 

  p  [long][long][long] 
 
  What address is p + 2? 

  … p + sizeof(long) * 2 
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Example 

int y[4]; 
y[1]=6; 

y[2]=2;  
6 
2 

y[0] 

y[1] 

y[2] 

y[3] 

y 
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Array Name as Pointer 

  What’s the difference between the examples? 

  Example 1: 

int z[8]; 
int *q; 
q=z; 

 

 
 

  Example 2: 

int z[8]; 
int *q; 
q=&z[0]; 
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Questions 

  What’s the difference between 
int* q; 

int q[5]; 

  What’s wrong with 
int ptr[2]; 

ptr[1] = 1; 

ptr[2] = 2; 
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Questions 

  What is the value of b[2] at the end? 
 
int b[3]; 
int* q; 
 
b[0]=48; b[1]=113; b[2]=1; 
 
q=b; 
 
*(q+1)=2; 
 
b[2]=*b; 
 
b[2]=b[2]+b[1]; 

48 113 1 
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b[0] b[1] b[2] 

q 



Questions 

  What is the value of b[2] at the end? 
 
int b[3]; 
int* q; 
 
b[0]=48; b[1]=113; b[2]=1; 
 
q=b; 
 
*(q+1)=2; 
 
b[2]=*b; 
 
b[2]=b[2]+b[1]; 

48 113 1 

48 2 1 
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b[0] b[1] b[2] 

q 
*(q+1) 



Questions 

  What is the value of b[2] at the end? 
 
int b[3]; 
int* q; 
 
b[0]=48; b[1]=113; b[2]=1; 
 
q=b; 
 
*(q+1)=2; 
 
b[2]=*b; 
 
b[2]=b[2]+b[1]; 

48 113 1 

48 2 1 

48 2 48 
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b[0] b[1] b[2] 

b* 



Questions 

  What is the value of b[2] at the end? 
 
int b[3]; 
int* q; 
 
b[0]=48; b[1]=113; b[2]=1; 
 
q=b; 
 
*(q+1)=2; 
 
b[2]=*b; 
 
b[2]=b[2]+b[1]; 

48 113 1 

48 2 1 

48 2 50 

48 2 48 
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b[0] b[1] b[2] 



Strings 
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Strings  
(Null-terminated Arrays of Char) 

  String = array of char followed by a 
“Null” character ‘\0’ to indicate end 
  Do not forget to leave room for the null 

character 
  Example 

  char s[5]; s[0] 

s[1] 

s[2] 

s[3] 

s[4] 

s 
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String and character literals 

  Strings 
  “this is a string” 

  “c” 
  Characters 

  ‘c’ 

  ‘X’ 

  Example 
  printf(“x = %c”, ‘x’); 

Copyright ©: University of Illinois CS 241 Staff 34 



Typecasting 
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Typecasting 

  Syntax: type name in parentheses in front of 
another expression 
 main() {  
     float a;  
     a = (float)5 / 3;  

 } 
  Result is a = 1.666666 

  Integer 5 is converted to floating point value 
before division and the operation between float 
and integer results in float 

  What would a be without the (float)? 
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Typecasting 

  Take care about using typecast  
  If used incorrectly, may result in loss of data  

  e.g., truncating a float when casting to an 
int 
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Typecasting pointers 

  Does not change pointer value 
  Does affect pointer arithmetic 
  Avoids compiler warnings 
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int* p = 500; 
 
printf(“%p %p\n”, 
       p+1, 
       ((char*) p) + 1 
      ); 



Typecasting pointers 

  Does not change pointer value 
  Does affect pointer arithmetic 
  Avoids compiler warnings 

Copyright ©: University of Illinois CS 241 Staff 40 

int* p = (int*) 500; 
 
printf(“%p %p\n”, 
       p+1, 
       ((char*) p) + 1 
      ); 



A puzzler 
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Can we make this work?! 

int x; 
 
 
 
 
 
 
 
printf(”%s is awesome!\n", &x); 
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241 is awesome! 



Wednesday 

  Lecture: OS structures 
  Homework due 11 a.m. via SVN 
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