
CS 241
January 23, 2012

Copyright ©: University of Illinois CS 241 Staff 1

C Introduction (part 2)

Announcements

  Anonymous feedback

  Honors section

  Registration

Copyright ©: University of Illinois CS 241 Staff 2

  Pointers
  Memory allocation
  Arrays
  Strings

Theme:
how memory
really works

3 Copyright ©: University of Illinois CS 241 Staff

Review: New concepts in C

Pointers

Copyright ©: University of Illinois CS 241 Staff 4

Variables

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Memory
Address

Name

Value

int x;
double y;
float z;
double* p;
int d;

Type of each variable
(also determines size)

5 Copyright ©: University of Illinois CS 241 Staff

The “&” Operator:
Reads “Address of”

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Name

Value

&y

6 Copyright ©: University of Illinois CS 241 Staff

Pointers

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable
whose value is the
address of another

Copyright ©: University of Illinois CS 241 Staff 7

*p = “Variable p points to”

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable
whose value is the
address of another

*p

Copyright ©: University of Illinois CS 241 Staff 8

Memory allocation

Copyright ©: University of Illinois CS 241 Staff 9

Memory allocation

  Two ways to dynamically allocate
memory

  Stack
  Named variables in functions
  Allocated for you when you call a function
  Deallocated for you when function returns

  Heap
  Memory on demand
  You are responsible for all allocation and

deallocation

Copyright ©: University of Illinois CS 241 Staff 10

Sample layout for program
image in main memory

Command-line arguments
and environment variables

Uninitialized static data

Initialized static data

Program text

Processes have three
segments: text, data, stack

stack

heap
Allocations from malloc family

Activation record for function calls
(return address, parameters,
saved registers, automatic variables)

argc, argv, environment High address

Low address

11 Copyright ©: University of Illinois CS 241 Staff

Allocating and deallocating
heap memory

  Dynamically allocating memory
  Programmer explicitly requests space in memory
  Space is allocated dynamically on the heap
  E.g., using “malloc” in C, “new” in Java

  Dynamically deallocating memory
  Must reclaim or recycle memory that is never used again
  To avoid (eventually) running out of memory
  Either manual or via automatic “garbage collection”

Copyright ©: University of Illinois CS 241 Staff 12

Heap memory allocation

  C++:
  new and delete allocate memory for a

whole object

  C:
  malloc and free deal with unstructured

blocks of bytes
 void* malloc(size_t size);
 void free(void* ptr);

13 Copyright ©: University of Illinois CS 241 Staff

Example

int* p;

p = (int*) malloc(sizeof(int));

*p = 5;

free(p);

Cast to the
right type

How many bytes
do you want?

Copyright ©: University of Illinois CS 241 Staff 14

Manual deallocation can lead
to bugs

  Dangling pointers
  Programmer frees a region of memory
  … but still has a pointer to it
  Dereferencing pointer reads or writes nonsense values

Copyright ©: University of Illinois CS 241 Staff 15

int main(void) {
 int *p;
 p = malloc(sizeof(int));
 …
 free(p);
 …
 printf(“%d\n”,*p);

}

May print
nonsense

Manual deallocation can lead
to bugs

  Memory leak
  Programmer neglects to free unused region of memory
  So, the space can never be allocated again
  Eventually may consume all of the available memory

Copyright ©: University of Illinois CS 241 Staff 16

void f(void) {
 int *d;
 d = malloc(sizeof(int));

}

int main(void) {

 while (1) f();
}

Eventually,
malloc()
returns
NULL

Manual deallocation can lead
to bugs

  Double free
  Programmer mistakenly frees a region more than once
  Leading to corruption of the heap data structure
  … or premature destruction of a different object

Copyright ©: University of Illinois CS 241 Staff 17

int main(void) {
 int *p, *q;
 p = malloc(sizeof(int));
 …
 free(p);
 q = malloc(sizeof(int));
 free(p);

}

Might free
space
allocated by
q!

I’m hungry. More bytes plz.

int* p = (int*) malloc(10 * sizeof(int));

  Now I have space for 10 integers, laid
out contiguously in memory. What
would be a good name for that...?

18 Copyright ©: University of Illinois CS 241 Staff

Arrays

Copyright ©: University of Illinois CS 241 Staff 19

Arrays

  Contiguous block of memory
  Fits one or more elements of some type

  Two ways to allocate
  named variable
 int x[10];

  dynamic
 int* x = (int*) malloc(10*sizeof(int));

Copyright ©: University of Illinois CS 241 Staff 20

Is there a
difference?

Arrays

int p[5];

p[0]

p[1]

p[2]

p[3]

p[4]

Name of array (is a pointer)

p

Shorthand:
*(p+1) is called p[1]
*(p+2) is called p[2]
etc..

Copyright ©: University of Illinois CS 241 Staff 22

Adding integers to pointers
(pointer arithmetic)

  Compiler uses the type information
  long *p;

  p  [long][long][long]

  What address is p + 2?

  … p + sizeof(long) * 2

23 Copyright ©: University of Illinois CS 241 Staff

Example

int y[4];
y[1]=6;

y[2]=2;
6
2

y[0]

y[1]

y[2]

y[3]

y

Copyright ©: University of Illinois CS 241 Staff 24

Array Name as Pointer

  What’s the difference between the examples?

  Example 1:

int z[8];
int *q;
q=z;

  Example 2:

int z[8];
int *q;
q=&z[0];

Copyright ©: University of Illinois CS 241 Staff 25

Questions

  What’s the difference between
int* q;

int q[5];

  What’s wrong with
int ptr[2];

ptr[1] = 1;

ptr[2] = 2;

Copyright ©: University of Illinois CS 241 Staff 27

Questions

  What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

48 113 1

Copyright ©: University of Illinois CS 241 Staff 28

b[0] b[1] b[2]

q

Questions

  What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

48 113 1

48 2 1

Copyright ©: University of Illinois CS 241 Staff 29

b[0] b[1] b[2]

q
*(q+1)

Questions

  What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

48 113 1

48 2 1

48 2 48

Copyright ©: University of Illinois CS 241 Staff 30

b[0] b[1] b[2]

b*

Questions

  What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

48 113 1

48 2 1

48 2 50

48 2 48

Copyright ©: University of Illinois CS 241 Staff 31

b[0] b[1] b[2]

Strings

Copyright ©: University of Illinois CS 241 Staff 32

Strings
(Null-terminated Arrays of Char)

  String = array of char followed by a
“Null” character ‘\0’ to indicate end
  Do not forget to leave room for the null

character
  Example

  char s[5]; s[0]

s[1]

s[2]

s[3]

s[4]

s

Copyright ©: University of Illinois CS 241 Staff 33

String and character literals

  Strings
  “this is a string”

  “c”
  Characters

  ‘c’

  ‘X’

  Example
  printf(“x = %c”, ‘x’);

Copyright ©: University of Illinois CS 241 Staff 34

Typecasting

Copyright ©: University of Illinois CS 241 Staff 35

Typecasting

  Syntax: type name in parentheses in front of
another expression
 main() {
 float a;
 a = (float)5 / 3;

 }
  Result is a = 1.666666

  Integer 5 is converted to floating point value
before division and the operation between float
and integer results in float

  What would a be without the (float)?
36 Copyright ©: University of Illinois CS 241 Staff

Typecasting

  Take care about using typecast
  If used incorrectly, may result in loss of data

  e.g., truncating a float when casting to an
int

37 Copyright ©: University of Illinois CS 241 Staff

Typecasting pointers

  Does not change pointer value
  Does affect pointer arithmetic
  Avoids compiler warnings

Copyright ©: University of Illinois CS 241 Staff 38

int* p = 500;

printf(“%p %p\n”,
 p+1,
 ((char*) p) + 1
);

Typecasting pointers

  Does not change pointer value
  Does affect pointer arithmetic
  Avoids compiler warnings

Copyright ©: University of Illinois CS 241 Staff 40

int* p = (int*) 500;

printf(“%p %p\n”,
 p+1,
 ((char*) p) + 1
);

A puzzler

Copyright ©: University of Illinois CS 241 Staff 41

Can we make this work?!

int x;

printf(”%s is awesome!\n", &x);

Copyright ©: University of Illinois CS 241 Staff 42

241 is awesome!

Wednesday

  Lecture: OS structures
  Homework due 11 a.m. via SVN

Copyright ©: University of Illinois CS 241 Staff 48

