
CS 241
January 23, 2012

Copyright ©: University of Illinois CS 241 Staff 1

C Introduction (part 2)

Announcements

  Anonymous feedback

  Honors section

  Registration

Copyright ©: University of Illinois CS 241 Staff 2

  Pointers
  Memory allocation
  Arrays
  Strings

Theme:
how memory
really works

3 Copyright ©: University of Illinois CS 241 Staff

Review: New concepts in C

Pointers

Copyright ©: University of Illinois CS 241 Staff 4

Variables

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Memory
Address

Name

Value

int x;
double y;
float z;
double* p;
int d;

Type of each variable
(also determines size)

5 Copyright ©: University of Illinois CS 241 Staff

The “&” Operator:
Reads “Address of”

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Name

Value

&y

6 Copyright ©: University of Illinois CS 241 Staff

Pointers

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable
whose value is the
address of another

Copyright ©: University of Illinois CS 241 Staff 7

*p = “Variable p points to”

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable
whose value is the
address of another

*p

Copyright ©: University of Illinois CS 241 Staff 8

Memory allocation

Copyright ©: University of Illinois CS 241 Staff 9

Memory allocation

  Two ways to dynamically allocate
memory

  Stack
  Named variables in functions
  Allocated for you when you call a function
  Deallocated for you when function returns

  Heap
  Memory on demand
  You are responsible for all allocation and

deallocation

Copyright ©: University of Illinois CS 241 Staff 10

Sample layout for program
image in main memory

Command-line arguments
and environment variables

Uninitialized static data

Initialized static data

Program text

Processes have three
segments: text, data, stack

stack

heap
Allocations from malloc family

Activation record for function calls
(return address, parameters,
saved registers, automatic variables)

argc, argv, environment High address

Low address

11 Copyright ©: University of Illinois CS 241 Staff

Allocating and deallocating
heap memory

  Dynamically allocating memory
  Programmer explicitly requests space in memory
  Space is allocated dynamically on the heap
  E.g., using “malloc” in C, “new” in Java

  Dynamically deallocating memory
  Must reclaim or recycle memory that is never used again
  To avoid (eventually) running out of memory
  Either manual or via automatic “garbage collection”

Copyright ©: University of Illinois CS 241 Staff 12

Heap memory allocation

  C++:
  new and delete allocate memory for a

whole object

  C:
  malloc and free deal with unstructured

blocks of bytes
 void* malloc(size_t size);
 void free(void* ptr);

13 Copyright ©: University of Illinois CS 241 Staff

Example

int* p;

p = (int*) malloc(sizeof(int));

*p = 5;

free(p);

Cast to the
right type

How many bytes
do you want?

Copyright ©: University of Illinois CS 241 Staff 14

Manual deallocation can lead
to bugs

  Dangling pointers
  Programmer frees a region of memory
  … but still has a pointer to it
  Dereferencing pointer reads or writes nonsense values

Copyright ©: University of Illinois CS 241 Staff 15

int main(void) {
 int *p;
 p = malloc(sizeof(int));
 …
 free(p);
 …
 printf(“%d\n”,*p);

}

May print
nonsense

Manual deallocation can lead
to bugs

  Memory leak
  Programmer neglects to free unused region of memory
  So, the space can never be allocated again
  Eventually may consume all of the available memory

Copyright ©: University of Illinois CS 241 Staff 16

void f(void) {
 int *d;
 d = malloc(sizeof(int));

}

int main(void) {

 while (1) f();
}

Eventually,
malloc()
returns
NULL

Manual deallocation can lead
to bugs

  Double free
  Programmer mistakenly frees a region more than once
  Leading to corruption of the heap data structure
  … or premature destruction of a different object

Copyright ©: University of Illinois CS 241 Staff 17

int main(void) {
 int *p, *q;
 p = malloc(sizeof(int));
 …
 free(p);
 q = malloc(sizeof(int));
 free(p);

}

Might free
space
allocated by
q!

I’m hungry. More bytes plz.

int* p = (int*) malloc(10 * sizeof(int));

  Now I have space for 10 integers, laid
out contiguously in memory. What
would be a good name for that...?

18 Copyright ©: University of Illinois CS 241 Staff

Arrays

Copyright ©: University of Illinois CS 241 Staff 19

Arrays

  Contiguous block of memory
  Fits one or more elements of some type

  Two ways to allocate
  named variable
 int x[10];

  dynamic
 int* x = (int*) malloc(10*sizeof(int));

Copyright ©: University of Illinois CS 241 Staff 20

Is there a
difference?

Arrays

int p[5];

p[0]

p[1]

p[2]

p[3]

p[4]

Name of array (is a pointer)

p

Shorthand:
*(p+1) is called p[1]
*(p+2) is called p[2]
etc..

Copyright ©: University of Illinois CS 241 Staff 22

Adding integers to pointers
(pointer arithmetic)

  Compiler uses the type information
  long *p;

  p [long][long][long]

  What address is p + 2?

  … p + sizeof(long) * 2

23 Copyright ©: University of Illinois CS 241 Staff

Example

int y[4];
y[1]=6;

y[2]=2;
6
2

y[0]

y[1]

y[2]

y[3]

y

Copyright ©: University of Illinois CS 241 Staff 24

Array Name as Pointer

  What’s the difference between the examples?

  Example 1:

int z[8];
int *q;
q=z;

  Example 2:

int z[8];
int *q;
q=&z[0];

Copyright ©: University of Illinois CS 241 Staff 25

Questions

  What’s the difference between
int* q;

int q[5];

  What’s wrong with
int ptr[2];

ptr[1] = 1;

ptr[2] = 2;

Copyright ©: University of Illinois CS 241 Staff 27

Questions

  What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

48 113 1

Copyright ©: University of Illinois CS 241 Staff 28

b[0] b[1] b[2]

q

Questions

  What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

48 113 1

48 2 1

Copyright ©: University of Illinois CS 241 Staff 29

b[0] b[1] b[2]

q
*(q+1)

Questions

  What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

48 113 1

48 2 1

48 2 48

Copyright ©: University of Illinois CS 241 Staff 30

b[0] b[1] b[2]

b*

Questions

  What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

48 113 1

48 2 1

48 2 50

48 2 48

Copyright ©: University of Illinois CS 241 Staff 31

b[0] b[1] b[2]

Strings

Copyright ©: University of Illinois CS 241 Staff 32

Strings
(Null-terminated Arrays of Char)

  String = array of char followed by a
“Null” character ‘\0’ to indicate end
  Do not forget to leave room for the null

character
  Example

  char s[5]; s[0]

s[1]

s[2]

s[3]

s[4]

s

Copyright ©: University of Illinois CS 241 Staff 33

String and character literals

  Strings
  “this is a string”

  “c”
  Characters

  ‘c’

  ‘X’

  Example
  printf(“x = %c”, ‘x’);

Copyright ©: University of Illinois CS 241 Staff 34

Typecasting

Copyright ©: University of Illinois CS 241 Staff 35

Typecasting

  Syntax: type name in parentheses in front of
another expression
 main() {
 float a;
 a = (float)5 / 3;

 }
  Result is a = 1.666666

  Integer 5 is converted to floating point value
before division and the operation between float
and integer results in float

  What would a be without the (float)?
36 Copyright ©: University of Illinois CS 241 Staff

Typecasting

  Take care about using typecast
  If used incorrectly, may result in loss of data

  e.g., truncating a float when casting to an
int

37 Copyright ©: University of Illinois CS 241 Staff

Typecasting pointers

  Does not change pointer value
  Does affect pointer arithmetic
  Avoids compiler warnings

Copyright ©: University of Illinois CS 241 Staff 38

int* p = 500;

printf(“%p %p\n”,
 p+1,
 ((char*) p) + 1
);

Typecasting pointers

  Does not change pointer value
  Does affect pointer arithmetic
  Avoids compiler warnings

Copyright ©: University of Illinois CS 241 Staff 40

int* p = (int*) 500;

printf(“%p %p\n”,
 p+1,
 ((char*) p) + 1
);

A puzzler

Copyright ©: University of Illinois CS 241 Staff 41

Can we make this work?!

int x;

printf(”%s is awesome!\n", &x);

Copyright ©: University of Illinois CS 241 Staff 42

241 is awesome!

Wednesday

  Lecture: OS structures
  Homework due 11 a.m. via SVN

Copyright ©: University of Illinois CS 241 Staff 48

