
CS 241
January 20, 2012

Copyright ©: University of Illinois CS 241 Staff 1

C Survival Guide

Announcements

  Piazza access code: ________
  Registered?

Copyright ©: University of Illinois CS 241 Staff 2

Good news: Writing C code is
easy!

void* myfunction() {
 char *p;
 *p = 0;
 return (void*) &p;
}

Copyright ©: University of Illinois CS 241 Staff 3

Bad news: Writing BAD C
code is easy!

void* myfunction() {
 char *p;
 *p = 0;
 return (void*) &p;
}

Copyright ©: University of Illinois CS 241 Staff 4

What is
wrong with
this code?

How do I write good C
programs?

  Fluency in C syntax
  Stack (static) vs. Heap (dynamic) memory

allocation
  Key skill: read code for bugs

  Do not rely solely on compiler warnings, if any,
and testing

  Key skill: debugging
  Learn to use a debugger, not just printfs!

  Key skill: defensive programming
  Avoid assumptions about what is probably true

Copyright ©: University of Illinois CS 241 Staff 6

Why C instead of Java?
  C helps you get “under the hood”

  One step up from assembly language
  Many existing servers/systems written in C

  C helps you learn how to write large-scale
programs
  C is lower-level: provides more opportunities to

create abstractions
  C has some flaws: motivates discussions of

software engineering principles

Copyright ©: University of Illinois CS 241 Staff 7

C vs. Java: Design Goals

  Java design goals
  Support object-oriented programming
  Allow same program to run on multiple operating systems
  Support using computer networks
  Execute code from remote sources securely
  Adopt the good parts of other languages

  Implications for Java
  Good for application-level programming
  High-level (insulates from assembly language, hardware)
  Portability over efficiency
  Security over efficiency

Copyright ©: University of Illinois CS 241 Staff 8

C vs. Java: Design Goals

  C design goals
  Support structured programming
  Support development of the Unix OS and Unix tools

  As Unix became popular, so did C
  Implications for C

  Good for systems-level programming
  Low-level
  Efficiency over portability
  Efficiency over security

  Anything you can do in Java you can do in C – it
just might look ugly in C!

Copyright ©: University of Illinois CS 241 Staff 9

C vs. C++

  C++ is “C with Classes”
  C is only a subset of C++

  C++ has objects, a bigger standard library (e.g.,
STL), parameterized types, etc.

  C++ is a little bit more strongly typed
  C is fortunately a subset of C++

  Can be simpler, more direct
  C is a subset of C++

  All syntax you use in this class is valid for C++
  Not all C++ syntax you’ve used, however, is

valid for C 10 Copyright ©: University of Illinois CS 241 Staff

A Few Differences between C
and C++

  Input/Output
  C does not have “iostreams”
  C++: cout<<"hello world“<<endl;
  C: printf("hello world\n“);

  Heap memory allocation
  C++: new/delete

  int *x = new int[8]; delete(x);

  C: malloc()/free()
  int *x = malloc(8 * sizeof(int));

free(x);

11 Copyright ©: University of Illinois CS 241 Staff

Compiler

  gcc
  Preprocessor
  Compiler
  Linker
  See manual “man” for options: man gcc

  "Ansi-C" standards C89 versus C99
  C99: Mix variable declarations and code (for int i=…)
  C++ inline comments //a comment

  make – a utility to build executables

12 Copyright ©: University of Illinois CS 241 Staff

Programming in C

  C = Variables + Instructions

13 Copyright ©: University of Illinois CS 241 Staff

Programming in C

  C = Variables + Instructions

14

…

printf/scanf

assignment

if

switch …

for

while

int

char

float

string

pointer

array

Copyright ©: University of Illinois CS 241 Staff 14

What we’ll show you

  You already know a lot of C from C++:
int my_fav_function(int x) {
 return x+1; }
  Key concepts for this lecture:

  Pointers
  Memory allocation
  Arrays
  Strings

Theme:
how memory
really works

15 Copyright ©: University of Illinois CS 241 Staff

Pointers

Copyright ©: University of Illinois CS 241 Staff 24

Variables

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Memory
Address

Name

Value

int x;
double y;
float z;
double* p;
int d;

Type of each variable
(also determines size)

25 Copyright ©: University of Illinois CS 241 Staff

The “&” Operator:
Reads “Address of”

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

Value4

Value5

x

y

z

p

d

Name

Value

&y

26 Copyright ©: University of Illinois CS 241 Staff

Pointers

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable
whose value is the
address of another

Copyright ©: University of Illinois CS 241 Staff 27

*p = “Variable p points to”

10,000

10,002

10,008

10,010

10,012

…

Value1

Value2

Value3

10,002

Value5

x

y

z

p

d

Name

Value

A pointer is a variable
whose value is the
address of another

*p

Copyright ©: University of Illinois CS 241 Staff 28

What is the Output?

main() {
 int *p, q, x;

 x=10;

 p=&x;

 *p=x+1;

 q=x;

 printf (“Q = %d\n“, q);

}

Copyright ©: University of Illinois CS 241 Staff 29

Cardinal Rule: Must Initialize
Pointers before Using them

int *p;
*p = 10;

GOOD or BAD?

Copyright ©: University of Illinois CS 241 Staff 35

How to initialize pointers

  Set equal to address of some piece of
memory

  …or NULL for “pointing nowhere”

  OK, where do we get memory?

Copyright ©: University of Illinois CS 241 Staff 38

Memory allocation

Copyright ©: University of Illinois CS 241 Staff 39

Memory allocation

  Two ways to dynamically allocate
memory

  Stack
  Named variables in functions
  Allocated for you when you call a function
  Deallocated for you when function returns

  Heap
  Memory on demand
  You are responsible for all allocation and

deallocation

Copyright ©: University of Illinois CS 241 Staff 40

Allocating and deallocating
heap memory

  Dynamically allocating memory
  Programmer explicitly requests space in memory
  Space is allocated dynamically on the heap
  E.g., using “malloc” in C, “new” in Java

  Dynamically deallocating memory
  Must reclaim or recycle memory that is never used again
  To avoid (eventually) running out of memory
  Either manual or via automatic “garbage collection”

Copyright ©: University of Illinois CS 241 Staff 41

Option #1: Garbage Collection

  Run-time system does garbage collection (Java)
  Automatically determines which objects can’t be accessed
  Then, reclaims the memory used by these objects

Copyright ©: University of Illinois CS 241 Staff 42

Object x = new Foo() ;
Object y = new Bar() ;
x = new Quux() ;

if (x.check_something()) {

 x.do_something(y) ;
}

System.exit(0) ;

Object Foo()
is never
used again!

Challenges of Garbage
Collection
  Detecting the garbage is not always easy

  long char z = x ;
  x = new Quux();
  Run-time system cannot collect all the garbage

  Detecting the garbage introduces overhead
  Keeping track of references to object (e.g., counters)
  Scanning through accessible objects to identify garbage
  Sometimes walking through a large amount of memory

  Cleaning the garbage leads to bursty delays
  E.g., periodic scans of the objects to hunt for garbage
  Leads to unpredictable “freezes” of the running program
  Very problematic for real-time applications

  … though good run-time systems avoid long freezes
43

Option #2: Manual
Deallocation
  Programmer deallocates the memory (C and C++)

  Manually determines which objects can’t be accessed
  And then explicitly returns those resources to the heap
  E.g., using “free” in C or “delete” in C++

  Advantages
  Lower overhead
  No unexpected “pauses”
  More efficient use of memory

  Disadvantages
  More complex for the programmer
  Subtle memory-related bugs
  Can lead to security vulnerabilities in code

44

Manual deallocation can lead
to bugs

  Dangling pointers
  Programmer frees a region of memory
  … but still has a pointer to it
  Dereferencing pointer reads or writes nonsense values

Copyright ©: University of Illinois CS 241 Staff 45

int main(void) {
 char *p;
 p = malloc(10);
 …
 free(p);
 …
 printf(“%c\n”,*p);

}

May print
nonsense
character

Manual deallocation can lead
to bugs

  Memory leak
  Programmer neglects to free unused region of memory
  So, the space can never be allocated again
  Eventually may consume all of the available memory

Copyright ©: University of Illinois CS 241 Staff 46

void f(void) {
 char *s;
 s = malloc(50);

}

int main(void) {

 while (1) f();
}

Eventually,
malloc()
returns
NULL

Manual deallocation can lead
to bugs

  Double free
  Programmer mistakenly frees a region more than once
  Leading to corruption of the heap data structure
  … or premature destruction of a different object

Copyright ©: University of Illinois CS 241 Staff 47

int main(void) {
 char *p, *q;
 p = malloc(10);
 …
 free(p)
 q = malloc(10);
 free(p)

}

Might free
space
allocated by
q!

Heap memory allocation

  C++:
  new and delete allocate memory for a

whole object

  C:
  malloc and free deal with unstructured

blocks of bytes
 void* malloc(size_t size);
 void free(void* ptr);

48 Copyright ©: University of Illinois CS 241 Staff

Example

int* p;

p = (int*) malloc(sizeof(int));

*p = 5;

free(p);

Cast to the
right type

How many bytes
do you want?

Copyright ©: University of Illinois CS 241 Staff 49

I’m hungry. More bytes plz.

int* p = (int*) malloc(10 * sizeof(int));

  Now I have space for 10 integers, laid
out contiguously in memory. What
would be a good name for that...?

50 Copyright ©: University of Illinois CS 241 Staff

Arrays

  Contiguous block of memory
  Fits one or more elements of some type

  Two ways to allocate
  named variable
 int x[10];

  dynamic
 int* x = (int*) malloc(10*sizeof(int));

Copyright ©: University of Illinois CS 241 Staff 51

One is on the stack,
one is on the heap

Is there a
difference?

Arrays

int p[5];

p[0]

p[1]

p[2]

p[3]

p[4]

Name of array (is a pointer)

p

Shorthand:
*(p+1) is called p[1]
*(p+2) is called p[2]
etc..

Copyright ©: University of Illinois CS 241 Staff 52

Example

int y[4];
y[1]=6;

y[2]=2;
6
2

y[0]

y[1]

y[2]

y[3]

y

Copyright ©: University of Illinois CS 241 Staff 53

Array Name as Pointer

  What’s the difference between the examples?

  Example 1:

int z[8];
int *q;
q=z;

  Example 2:

int z[8];
int *q;
q=&z[0];

Copyright ©: University of Illinois CS 241 Staff 54

Questions

  What’s the difference between
int* q;

int q[5];

  What’s wrong with
int ptr[2];

ptr[1] = 1;

ptr[2] = 2;

Copyright ©: University of Illinois CS 241 Staff 56

Questions

  What is the value of b[2] at the end?

int b[3];
int* q;

b[0]=48; b[1]=113; b[2]=1;

q=b;

*(q+1)=2;

b[2]=*b;

b[2]=b[2]+b[1];

48 113 1

Copyright ©: University of Illinois CS 241 Staff 57

b[0] b[1] b[2]

q

Strings

Copyright ©: University of Illinois CS 241 Staff 61

Strings
(Null-terminated Arrays of Char)

  Strings are arrays that contain the
string characters followed by a “Null”
character ‘\0’ to indicate end of string.
  Do not forget to leave room for the null

character
  Example

  char s[5];
s[0]

s[1]

s[2]

s[3]

s[4]

s

Copyright ©: University of Illinois CS 241 Staff 62

Conventions

  Strings
  “string”

  “c”

  Characters
  ‘c’

  ‘X’

Copyright ©: University of Illinois CS 241 Staff 63

String Operations

  strcpy
  strlen

  strcat

  strcmp

Copyright ©: University of Illinois CS 241 Staff 64

strcpy, strlen

  strcpy(ptr1,
ptr2);
  ptr1 and ptr2 are

pointers to char

  value =
strlen(ptr);
  value is an integer
  ptr is a pointer to

char

int len;
char str[15];
strcpy (str, "Hello,

world!");
len = strlen(str);

Copyright ©: University of Illinois CS 241 Staff 65

strcpy, strlen

  What’s wrong with

char str[5];

strcpy (str, "Hello");

Copyright ©: University of Illinois CS 241 Staff 66

strncpy

  strncpy(ptr1,
ptr2, num);
  ptr1 and ptr2 are

pointers to char
  num is the number of

characters to be
copied

int len;
char str1[15],

str2[15];

strcpy (str1,
"Hello, world!");

strncpy (str2, str1,
5);

Copyright ©: University of Illinois CS 241 Staff 67

strncpy

  strncpy(ptr1,
ptr2, num);
  ptr1 and ptr2 are

pointers to char
  num is the number of

characters to be
copied

int len;
char str1[15],

str2[15];

strcpy (str1,
"Hello, world!");

strncpy (str2, str1,
5);

Caution: strncpy blindly copies the
characters. It does not voluntarily
append the string-terminating null
character.

Copyright ©: University of Illinois CS 241 Staff 68

strcat

  strcat(ptr1, ptr2);
  ptr1 and ptr2 are pointers to char

  Concatenates the two null terminated strings
yielding one string (pointed to by ptr1).

char S[25] = "world!";

char D[25] = "Hello, ";
strcat(D, S);

Copyright ©: University of Illinois CS 241 Staff 69

strcat

  strcat(ptr1, ptr2);
  ptr1 and ptr2 are pointers to char

  Concatenates the two null terminated strings
yielding one string (pointed to by ptr1).
  Find the end of the destination string
  Append the source string to the end of the destination

string
  Add a NULL to new destination string

Copyright ©: University of Illinois CS 241 Staff 70

strcat Example

  What’s wrong with

char S[25] = "world!";

strcat(“Hello, ”, S);

Copyright ©: University of Illinois CS 241 Staff 71

strcat Example

  What’s wrong with

char *s = malloc(11 * sizeof(char));
 /* Allocate enough memory for an
 array of 11 characters, enough
 to store a 10-char long string. */

strcat(s, "Hello");

strcat(s, "World");

Copyright ©: University of Illinois CS 241 Staff 72

strcat

  strcat(ptr1, ptr2);
  ptr1 and ptr2 are pointers to char

  Compare to Java and C++
  string s = s + " World!";

  What would you get in C?
  If you did char* ptr0 = ptr1+ptr2;
  You would get the sum of two memory locations!

Copyright ©: University of Illinois CS 241 Staff 73

strcmp

  diff = strcmp(ptr1, ptr2);
  diff is an integer
  ptr1 and ptr2 are pointers to char

  Returns
  zero if strings are identical
  < 0 if ptr1 is less than ptr2 (earlier in a dictionary)
  > 0 if ptr1 is greater than ptr2 (later in a dictionary)

int diff;
char s1[25] = "pat";
char s2[25] = "pet";
diff = strcmp(s1, s2);

Copyright ©: University of Illinois CS 241 Staff 74

Can we make this work?!

int x;

printf("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff 75

Can we make this work?!

int x;

printf("This class is %s.\n",);

Copyright ©: University of Illinois CS 241 Staff 76

Can we make this work?!

int x;

printf("This class is %s.\n", &x);

 (char*)&x

Copyright ©: University of Illinois CS 241 Staff 77

Can we make this work?!

int x;

printf("This class is %s.\n", &x);

((char*)&x)[0] = 'f';

78 Copyright ©: University of Illinois CS 241 Staff

Can we make this work?!

int x;

printf("This class is %s.\n", &x);

((char*)&x)[0] = 'f';
((char*)&x)[1] = 'u';
((char*)&x)[2] = 'n';

79 Copyright ©: University of Illinois CS 241 Staff

Can we make this work?!

int x;

printf("This class is %s.\n", &x);

((char*)&x)[0] = 'f';
((char*)&x)[1] = 'u';
((char*)&x)[2] = 'n';
((char*)&x)[3] = '\0';

Perfectly legal
and perfectly

horrible!

80 Copyright ©: University of Illinois CS 241 Staff

Can we make this work?!

int x;

printf("This class is %s.\n", &x);

char* s = &x;
strcpy(s, “fun”);

81 Copyright ©: University of Illinois CS 241 Staff

Perfectly legal
and perfectly

horrible!

Other operations

Copyright ©: University of Illinois CS 241 Staff 82

Increment & decrement

  x++: yield old value, add one
  ++x: add one, yield new value

  --x and x-- are similar (subtract one)

int x = 10;

x++;

int y = x++;

int z = ++x;

11

13

83 Copyright ©: University of Illinois CS 241 Staff

Math: Increment and
Decrement Operators

  Example 1:
int x, y, z, w;

y=10; w=2;
x=++y;

z=--w;

  Example 2:
int x, y, z, w;
y=10; w=2;

x=y++;
z=w--;

Copyright ©: University of Illinois CS 241 Staff 84

What are x
and y at the
end of each

example?

Math: Increment and Decrement
Operators on Pointers

¡  Example 1:

int a[2];
int number1, number2, *p;
a[0]=1; a[1]=10;
p=a;
number1 = *p++;
number2 = *p;

¡  What will number1 and number2 be at the end?

Copyright ©: University of Illinois CS 241 Staff 86

Math: Increment and Decrement
Operators on Pointers

¡  Example

int a[2];
int number1, number2, *p;
a[0]=1; a[1]=10;
p=a;
number1 = *p++;
number2 = *p;

¡  What will number1 and number2 be at the end?

Hint: ++ increments pointer p not
variable *p

Copyright ©: University of Illinois CS 241 Staff 87

Logic: Relational (Condition)
Operators

== equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to

Copyright ©: University of Illinois CS 241 Staff 88

Review

Copyright ©: University of Illinois CS 241 Staff 90

Review

  int p1;
What does &p1 mean?

91 Copyright ©: University of Illinois CS 241 Staff

Review

  How much is y at the end?

int y, x, *p;

x = 20;

*p = 10;

y = x + *p;

92 Copyright ©: University of Illinois CS 241 Staff

Review

  What are the differences between x
and y?
char* f() {
 char *x;
 static char*y;
 return y;
}

Copyright ©: University of Illinois CS 241 Staff 94

Review: Debugging

if(strcmp("a","a"))
printf("same!");

Copyright ©: University of Illinois CS 241 Staff 95

Review: Debugging

int i = 4;
int *iptr;

iptr = &i;

*iptr = 5;//now i=5

Copyright ©: University of Illinois CS 241 Staff 96

Review: Debugging

char *p;
p=(char*)malloc(99);

strcpy("Hello",p);

printf("%s World",p);

free(p);

Copyright ©: University of Illinois CS 241 Staff 97

Review: Debugging

char msg[5];
strcpy (msg,"Hello");

Copyright ©: University of Illinois CS 241 Staff 98

Operator Description Associativity
()
[]
.

->
++ --

Parentheses (function call)
Brackets (array subscript)
Member selection via object name
Member selection via pointer
Postfix increment/decrement

left-to-right

++ --
+ -
! ~

(type)
*
&

sizeof

Prefix increment/decrement
Unary plus/minus
Logical negation/bitwise complement
Cast (change type)
Dereference
Address
Determine size in bytes

right-to-left

* / % Multiplication/division/modulus left-to-right
+ - Addition/subtraction left-to-right

<< >> Bitwise shift left, Bitwise shift right left-to-right
< <=
> >=

Relational less than/less than or equal to
Relational greater than/greater than or equal to

left-to-right

== != Relational is equal to/is not equal to left-to-right
& Bitwise AND left-to-right
^ Bitwise exclusive OR left-to-right
| Bitwise inclusive OR left-to-right

&& Logical AND left-to-right
|| Logical OR left-to-right
?: Ternary conditional right-to-left
=

+= -=
*= /=

%= &=
^= |=

<<= >>=

Assignment
Addition/subtraction assignment
Multiplication/division assignment
Modulus/bitwise AND assignment
Bitwise exclusive/inclusive OR assignment
Bitwise shift left/right assignment

right-to-left

, Comma (separate expressions) left-to-right

