C Survival Guide

CS 241
January 20, 2012

Copyright ©: University of Illinois CS 241 Staff

[Announcements

Plazza access code:

Registered?

Copyright ©: University of Illinois CS 241 Staff

|

Good news: Writing C code is
easy!

void* myfunction() {
char *p;
*p:O;

return (void¥*) &p;

Copyright ©: University of Illinois CS 241 Staff

|

Bad news: Writing BAD C
code Is easy!

void* myfunction() {
char *p;
*p:O;

return (void¥*) &p;

What is
wrong with
this code?

Copyright ©: University of Illinois CS 241 Staff

How do | write good C
programs??

Fluency in C syntax

Stack (static) vs. Heap (dynamic) memory
allocation

Key skill: read code for bugs

o Do not rely solely on compiler warnings, if any,
and testing

Key skill: debugging
o Learn to use a debugger, not just printfs!

Key skill: defensive programming
o Avoid assumptions about what is probably true

Copyright ©: University of Illinois CS 241 Staff

[Why C instead of Java?

C helps you get “under the hood”
o One step up from assembly language
o Many existing servers/systems written in C

C helps you learn how to write large-scale
programs

o C is lower-level: provides more opportunities to
create abstractions

o C has some flaws: motivates discussions of
software engineering principles

Copyright ©: University of Illinois CS 241 Staff

C vs. Java: Design Goals

= Java design goals

O O O O O

Support object-oriented programming

Allow same program to run on multiple operating systems
Support using computer networks

Execute code from remote sources securely

Adopt the good parts of other languages

= Implications for Java

@)

O
O
@)

Good for application-level programming

High-level (insulates from assembly language, hardware)
Portability over efficiency
Security over efficiency

Copyright ©: University of Illinois CS 241 Staff

C vs. Java: Design Goals

m C design goals
o Support structured programming
o Support development of the Unix OS and Unix tools
= As Unix became popular, so did C
= Implications for C
o Good for systems-level programming
o Low-level
o Efficiency over portability
o Efficiency over security

= Anything you can do in Java you can do in C — it
just might look ugly in C!

Copyright ©: University of Illinois CS 241 Staff

Cvs. C++

s C++is “C with Classes”
m Cisonly asubset of C++

o C++ has objects, a bigger standard library (e.g.,
STL), parameterized types, etc.

o C++is a little bit more strongly typed
m Cis fortunately a subset of C++
o Can be simpler, more direct
m Cis asubsetof C++
o All syntax you use in this class is valid for C++
o Not all C++ syntax you’ve used, however, is
valid for C

Copyright ©: University of Illinois CS 241 Staff

A Few Differences between C
and C++

= |Input/Output
o C does not have “iostreams”
o C++: cout<<"hello world“<<endl:
o C:printf("hello world\n");

= Heap memory allocation

o C++: new/delete

m int *x = new 1int[8]; delete (x);
o Cimalloc () /free ()
m 1int *x = malloc (8 * sizeof (int)):;
free (x);

Copyright ©: University of Illinois CS 241 Staff

Compiler

m (gcCC
o Preprocessor
o Compiler
o Linker
o See manual “man” for options: man gcc

= "Ansi-C" standards C89 versus C99

o C99: Mix variable declarations and code (for inti=...)
o C++ inline comments //a comment

= make — a utility to build executables

Copyright ©: University of Illinois CS 241 Staff 12]

[Programming in C

C = Variables + Instructions

Copyright ©: University of Illinois CS 241 Staff

[Programming in C

C = Variables + Instructions

— char —assignment
—int —printf/scanf
— float —1f

—poilinter — for

—array —while

. string I~ switch

Copyright ©: University of Illinois CS 241 Staff 14] 4

[What we’'ll show vou

You already know a lot of C from C++:

int my fav function(int x)
return x+1,; }

Key concepts for this lecture:
o Pointers

o Memory allocation Theme:
o Arrays how memory
o Strings really works

Copyright ©: University of Illinois CS 241 Staff

Pointers

Copyright ©: University of Illinois CS 241 Staff

Variables

Memory
Address

10,000

10,002

10,008
10,010

10,012

Name

Type of each variable
Value1 (also determines size)

int X;

Value2 double v,
\Value float 7 ;

* .
Value3 CIiOUble P

int d;

Valued

Valueb

Copyright ©: University of Illinois CS 241 Staff 25]

The “&” Operator:
Reads “Address of”

Name
& 10,000
Y \ %/ Value1
10,002
Y
Value2
\Value
10,008
Z Value3
10,010
P Valued
10,012
d Value5

Copyright ©: University of Illinois CS 241 Staff

Pointers

Name _ _ _
A pointer is a variable
10,000 = whose value is the
Valuet address of another
10,002
y
Value?2
\Value
10,008
Z Value3
10,010
P 10,002
10,012
d Value5

Copyright ©: University of Illinois CS 241 Staff 27]

*p = “Variable p points to”

Name

A pointer is a variable

Value1

whose value is the
address of another

Value2

‘--"‘-VMUe

Value3

10,002

Valueb

Copyright ©: University of Illinois CS 241 Staff

[What is the Output?

malin () {
int *p,
x=10;
P=&X;
*p=x+1;
q=Xy

printft

Jd, Xy

(“Q0 = %d\n", q);

Copyright ©: University of Illinois CS 241 Staff

|

Cardinal Rule: Must Initialize
Pointers before Using them

int *p; ____ GOOD or BAD?
*p = 10;

Copyright ©: University of Illinois CS 241 Staff

[How to initialize pointers

Set equal to address of some piece of
memory

...or NULL for “pointing nowhere”

OK, where do we get memory?

Copyright ©: University of Illinois CS 241 Staff

Memory allocation

Copyright ©: University of Illinois CS 241 Staff

[Memory allocation

= Two ways to dynamically allocate
memory

= Stack
= Named variables in functions
= Allocated for you when you call a function
= Deallocated for you when function returns
= Heap

o Memory on demand

o You are responsible for all allocation and
deallocation

Copyright ©: University of Illinois CS 241 Staff

Allocating and deallocating
heap memory

= Dynamically allocating memory
o Programmer explicitly requests space in memory
o Space is allocated dynamically on the heap
o E.g., using “malloc” in C, “new” in Java

= Dynamically deallocating memory
o Must reclaim or recycle memory that is never used again

o To avoid (eventually) running out of memory
o Either manual or via automatic “garbage collection”

Copyright ©: University of Illinois CS 241 Staff

Option #1: Garbage Collection

= Run-time system does garbage collection (Java)
o Automatically determines which objects can’t be accessed
o Then, reclaims the memory used by these objects

Object x = new Foo() e)
Object y = new Bi()/r‘/ Object Foo()
X = new Quux() ; | is never
Lused again!
if (x.check something()) { Y

x.do_something(y) ;
}

System.exit (0) ; 2 §i

Challenges of Garbage
Collection

= Detecting the garbage is not always easy
0o long char z = x ;
0O x = new Quux/() ;
o Run-time system cannot collect all the garbage

= Detecting the garbage introduces overhead
o Keeping track of references to object (e.g., counters)
o Scanning through accessible objects to identify garbage
o Sometimes walking through a large amount of memory

s Cleaning the garbage leads to bursty delays
o E.qg., periodic scans of the objects to hunt for garbage
o Leads to unpredictable “freezes” of the running program

o Very problematic for real-time applications
= ... though good run-time systems avoid long freezes

Option #2: Manual
Deallocation

Programmer deallocates the memory (C and C++)
o Manually determines which objects can’t be accessed

o And then explicitly returns those resources to the heap

o E.g., using “free” in C or “delete” in C++

Advantages

o Lower overhead

o No unexpected “pauses”

o More efficient use of memory

Disadvantages

o More complex for the programmer

o Subtle memory-related bugs

o Can lead to security vulnerabilities in code

Manual deallocation can lead
to bugs

m Dangling pointers
o Programmer frees a region of memory
o ... but still has a pointer to it
o Dereferencing pointer reads or writes nonsense values

int main(void) {
char *p; ~
p = malloc(10);

May print
nonsense

f ;
ree (p) % character
L Y,

printf (“sc\n”, *p) ;

} 45

Manual deallocation can lead
to bugs

s Memory leak
o Programmer neglects to free unused region of memory

o So, the space can never be allocated again
o Eventually may consume all of the available memory

void f (void) {
char *s; Vs ~
s = malloc(50); Eventually,

} T malloc()

returns

int main (void) { NULL P
while (1) £();

} 46]

Manual deallocation can lead
to bugs

s Double free
o Programmer mistakenly frees a region more than once
o Leading to corruption of the heap data structure
o ... or premature destruction of a different object

int main(void) {
char *p, *q;
p = malloc(10); Might free

space

free (p) allocated by
q = mal% q'
free (p) -\ ~

~

[Heap memory allocation

C++:

o new and delete allocate memory for a
whole object

C:

o malloc and free deal with unstructured

blocks of bytes

vold* malloc(size t size);
volid free(void* ptr);

Copyright ©: University of Illinois CS 241 Staff 48]

Example

int* p;

p = (1nt*) malloc(sizeof (int));

o= 5; \

How many bytes
do you want?

Cast to the
right type

Copyright ©: University of Illinois CS 241 Staff

[I’ m hungry. More bytes plz.

int* p = (int*) malloc (10 * sizeof (int)):;

Now | have space for 10 integers, laid
out contiguously in memory. What
would be a good name for that...?

Copyright ©: University of Illinois CS 241 Staff

Arrays

= Contiguous block of memory
o Fits one or more elements of some type

= Two ways to allocate
o named variable

int x[10];
o dynamic
int* x = (int*) malloc (10*sizeof (int)) ;
Is there a One is on the stack,

difference? one is on the heap

Copyright ©: University of Illinois CS 241 Staff 51]

Arrays

int pl[5];

f

Name of array (is a pointer) /

Shorthand:

P ~_¢____*

W NN RO

[0]
[1]
[2]
[3]
[4]

'O 'O 0 T T

*(pt+l) 1s called pl[1l]
*(pt2) 1s called p[2]
etc..

Copyright ©: University of Illinois CS 241 Staff

[Example

int vi4];
y[1]=6;
vI2]=2;

Copyright ©: U

KK K K
w N PO

niversity of Illinois CS 241 Staff

(<))}

N

[Array Name as Pointer

What's the difference between the examples?

Example 1: Example 2:
int z[8]; int z[8];
1 * .
int *q; int *qgy
q=z; =&z (0]

Copyright ©: University of Illinois CS 241 Staff 54]

[Questions

What's the difference between
int* qg;

int g[5];

What's wrong with
int ptrl[2];
ptr[l] = 1;
ptrl[2] = 2;

Copyright ©: University of Illinois CS 241 Staff

Questions

» What is the value of b[2] at the end?

int b[3]; E |

int* g;

b[0]=48; bl[l1l]=113; b[2]=1;
- qg=b;

*(gt+l)=2;

b[2]=*b;

b[2]=b[2]+b[1];

Copyright ©: University of Illinois CS 241 Staff

b[0]

b[1]

b[2]

48

113

Strings

Copyright ©: University of Illinois CS 241 Staff

61

Strings
[(Null-terminated Arrays of Char)

Strings are arrays that contain the
string characters followed by a “Null”

character “\o0’ to indicate end of string.

o Do not forget to leave room for the null
character

Example

O char s[b];

S

Copyright ©: University of Illinois CS 241 Staff

Conventions

Strings

11 ' 77
O string

(11 77

O C

Characters

1 ’

O C

1 ’

o X

Copyright ©: University of Illinois CS 241 Staff

[String Operations

strcpy
strlen
strcat

strcmp

Copyright ©: University of Illinois CS 241 Staff

strcpy, strlen

strcpy (ptrl, int len;

ptr2); char str[l5];
o ptrlandptr2 are

strcpy (str, "Hello,
pointers to char

world!") ;

value = len = strlen(str);

strlen (ptr)
o value is an integer

O ptr is a pointer to
char

Copyright ©: University of Illinois CS 241 Staff 65]

strcpy, strlen

What’ s wrong with

char str[b];

Strcpy

(str, "Hello");

Copyright ©: University of Illinois CS 241 Staff

strncpy

strncpy (ptrl,

ptr2, num);

o ptrlandptr2 are
pointers to char

o num is the number of
characters to be
copied

int len;

char strl[1l5],
str2[15];

strcpy (strl,
"Hello,

strncpy (str2, strl

S)

Copyright ©: University of Illinois CS 241 Staff

world!") ;

’

Str

O

Nncpry

strncpy (ptrl, int len;

ptr2, num); char strl[15],
ptrl and ptr2 are str2[15];

pointers to char

num IS the nu
characters to
copied

strcpy (strl,
mber of

be
strncpy (str2, strl

S)

Caution: strncpy blindly copies the
characters. It does not voluntarily
append the string-terminating null

character.

Copyright ©: University of Illinois CS 241 Staff

"Hello, world!");

’

strcat

strcat (ptrl, ptr2);
o ptrl and ptr2 are pointers to char

Concatenates the two null terminated strings
yielding one string (pointed to by ptr1).

char S[25] = "world!";
char D[25] = "Hello, ";
strcat (D, S);:

Copyright ©: University of Illinois CS 241 Staff

strcat

strcat (ptrl, ptr2);
o ptrl and ptr2 are pointers to char

Concatenates the two null terminated strings

yielding one string (pointed to by ptr1).

o Find the end of the destination string

o Append the source string to the end of the destination
string

o Add a NULL to new destination string

Copyright ©: University of Illinois CS 241 Staff

strcat Example

What’ s wrong with

char S[25] = "world!";

77

strcat (“Hello, ~, S);

Copyright ©: University of Illinois CS 241 Staff

strcat Example

What' s wrong with

char *s = malloc(ll * sizeof (char));
/* Allocate enough memory for an
array of 11 characters, enough
to store a 10-char long string. */

strcat (s, "Hello");

strcat (s, "World");

Copyright ©: University of Illinois CS 241 Staff 72]

strcat

strcat (ptrl, ptr2);
o ptrl and ptr2 are pointers to char

Compare to Java and C++

O string s = s + " World!";

What would you get in C?
o Ifyoudid char* ptr0 = ptrl+ptr2;
o You would get the sum of two memory locations!

Copyright ©: University of Illinois CS 241 Staff

strcmp

diff = strcmp(ptrl, ptr2);

o diff is an integer

o ptrl and ptr2 are pointers to char

Returns

o zero if strings are identical

o <O0ifptrlislessthan ptr2 (earlier in a dictionary)
o >0if ptrl is greater than ptr2 (later in a dictionary)

int diff;
char sl1[25] = "pat";
char s2[25] = "pet";

diff = strcmp(sl, s2);

Copyright ©: University of Illinois CS 241 Staff

Can we make this work?!

int x;

printf ("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff

[Can we make this work?!

int x;

$

printf ("This class is %s.\n",) ;

Copyright ©: University of Illinois CS 241 Staff

Can we make this work?!

int x;

(char*) &x

printf ("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff

Can we make this work?!

int x;

((char*)e&x) [0] = "£7;

printf ("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff

Can we make this work?!

int x;

((char*) &x) [0] = "£';
((char*)é&x) [1] = "u';
((char*) &x) [2] = "'n';

printf ("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff

Can we make this work?!

int Xx;

((char*)sx) [0] = '"f'; Perfectly legal
((char*)e&x) [1] = '"u'; and perfectly
((char*)&x) [2] = 'n'; horrible!
((char*)&x) [3] = "\0';

printf ("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff 80]

Can we make this work?!

int x;
char* s = gx: Perfectly legal
strepy (s, “fun”); and perfectly

horrible!

printf ("This class is %s.\n", &x);

Copyright ©: University of Illinois CS 241 Staff 81]

Other operations

Copyright ©: University of Illinois CS 241 Staff

82

[Increment & decrement

x++: yield old value, add one
++x: add one, yield new value

int x = 10;

X++;
int y = x++; 11
int z = ++x; 13

--x and x—-- are similar (subtract one)

Copyright ©: University of Illinois CS 241 Staff 83]

Math: Increment and
Decrement Operators

Example 1:

int x,
yv=10;
X=++tVy;

Z=——W;

Yr
W=2;

Zy

Example 2:

W, int Xy Yy
v=10; w=2;
X=y++;

Z=W——7;

Copyright ©: University of Illinois CS 241 Staff

Zy

Wy

What are x
and y at the
end of each

example?

Math: Increment and Decrement
Operators on Pointers

Example 1:

int al[2];
int numberl, number2, *p;
al0]l=1; al[l]l=10;

p=a,
numberl = *p++;
number?2 = *p;

What will number1 and number2 be at the end?

Copyright ©: University of Illinois CS 241 Staff 86]

Math: Increment and Decrement
Operators on Pointers

Example

int al[2];
int numberl, number2, *p;
al0]l=1; al[l]l=10;

p=a;
numpberl = *p++; ==Hint: ++ increments pointer p not
number2 = *p; variable *p

What will number1 and number2 be at the end?

Copyright ©: University of Illinois CS 241 Staff 87]

Operators

[Logic: Relational (Condition)

equal to

not equal to
greater than
less than
greater than or equal to
less than or equal to

Copyright ©: University of Illinois CS 241 Staff

Review

Copyright ©: University of Illinois CS 241 Staff

90

[Review

int pl;
What does spl mean?

Copyright ©: University of Illinois CS 241 Staff

Review

How much is vy at the end?
int v, X, *p;
x = 20;

*p = 10;
y = X + *p;

Copyright ©: University of Illinois CS 241 Staff

[Review

What are the differences between x

and y?
char* f£() {
char *x;

static char*y;
return vy;

Copyright ©: University of Illinois CS 241 Staff

[Review: Debugging

j—f (Strcmp ("a", "a"))
printf ("same!") ;

Copyright ©: University of Illinois CS 241 Staff

[Review: Debugging

int 1 = 4;
int *1ptr;
iptr = &1;
*iptr = 5;//now 1=5

Copyright ©: University of Illinois CS 241 Staff

[Review: Debugging

char *p;
p=(char*)malloc (99);
strcpy ("Hello", p) ;
printf ("%$s World",p)
free(p);

Copyright ©: University of Illinois CS 241 Staff

[Review: Debugging

char msgl[b];

strcpy (msg, "Hello");

Copyright ©: University of Illinois CS 241 Staff

Operator Description Associativity
() Parentheses (function call) left-to-right
[Brackets (array subscript)
. Member selection via object name
-> Member selection via pointer
++ - Postfix increment/decrement
++ -- Prefix increment/decrement right-to-left
+ - Unary plus/minus
I ~ Logical negation/bitwise complement
(type) Cast (change type)
* Dereference
& Address
sizeof Determine size in bytes
I % Multiplication/division/modulus left-to-right
+ - Addition/subtraction left-to-right
<< >> Bitwise shift left, Bitwise shift right left-to-right
< <= Relational less than/less than or equal to left-to-right
> >= Relational greater than/greater than or equal to
== I= Relational is equal to/is not equal to left-to-right
& Bitwise AND left-to-right
A Bitwise exclusive OR left-to-right
| Bitwise inclusive OR left-to-right
&& Logical AND left-to-right
| Logical OR left-to-right
?: Ternary conditional right-to-left
= Assignment right-to-left
+= -= Addition/subtraction assignment
= /= Multiplication/division assignment
%= &= Modulus/bitwise AND assignment
A= |= Bitwise exclusive/inclusive OR assignment
<<= >>= Bitwise shift left/right assignment
: Comma (separate expressions) left-to-right

