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Topics This Section 

• MP4 overview 

• Function Pointers 

• Pthreads 

• File I/O 
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MP4 

• Goal: Multi-threaded Merge Sort 

 

• Three new programming concepts: 

• Function Pointers 

• Threads 

• File I/O 
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MP4 

• Input: 

• We provide you a program to generate 
input files of random unique integers 

 

• Two parts to the MP: 

• Sorting 

• Merging 

 



Part 1: [Multi-threaded sorting] 

Each input file is sorted by a different thread, and the output is saved to a  
file with the same name plus “.sorted”. 

Ignore empty lines. 

Numerical order. 

 

Use    qsort: 

 

void qsort(void *base, size_t nmemb, size_t size, 

                  int(*compar)(const void *, const void *)); 

 

 

 

 

 

Pointer to a function 

MP4 



Part 2: [Multi-threaded merging] 

Each pair of files is merged until only one is left.  

A  new round is started when all files in the previous one are merged, 
removing duplicates along the way.   (DON’T USE qsort() on MERGE) 
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File Input/Output 



File I/O in C 
MP4 requires you to read and write text files in C. 

 

Two primary means of doing I/O in C: 

 
 Through lightly-wrapped system calls 

open(), close(), read(), write(), etc 

 

 Through C-language standards 

fopen(), fclose(), fread(), fwrite(), etc 
             

 



File I/O in C 
Opening a file (Method #1): 

 
fopen(const char *filename, const char *mode); 

 
filename: path to file to open 
mode: what do you wish to do with the file? 

r: read only 
r+: read and write (file must already exist) 
 
w: write (or overwrite) a file 
w+: write (or overwrite) a file and allow for reading 
 
a: append to the end of the file (works for new files, too) 
a+: appends to end of file and allows for reading anywhere in the 
file; however, writing will always occur as an append 
             

 



File I/O in C 
Opening a file (Method #2): 
open(const char *filename, int flags, int mode); 

 

filename: path to file to open 

flags: what do you wish to do with the file? 

One of the following is required: 
O_RDONLY, O_WRONLY, O_RDWR 

And any number of these flags (yo “add” these flags, simply 

binary-OR them together ): 
O_APPEND: Similar to “a+” in fopen() 

O_CREAT: Allows creation of a file if it doesn’t exist 

O_SYNC: Allows for synchronous I/O (thread-safeness) 

mode: what permissions should the new file have? 

(S_IRUSR | S_IWUSR) creates a user read-write file. 
 
             

 



Opening Files in C 
Return value of opening a file: 

Having called open() or fopen(), they will both create 
an entry in the OS’s file descriptor table. 

Specifics of a file descriptor table will be covered in-depth in the 
second-half of CS 241. 

 

Both open() and fopen() returns information about 
its file descriptor: 
open(): Returns an int. 

fopen(): Returns a (FILE *). 

 

 



Reading Files in C 
Two ways to read files in C: 
fread(void *ptr, size_t size, size_t count, FILE *s); 

 

*ptr: Where should the data be read into? 

size: What is the size of each piece of data?    

count: How many pieces?                               

*s: What (FILE *) do we read from?               

 

read(int fd, void *buf, size_t count); 

 

fd: What file do we read from? 

*buf: Where should the data be read into? 

count: How many bytes should be read? 

 



Reading Files in C 
Reading more advancely… 
fscanf(FILE *stream, const char *format, …); 

Allows for reading at a semantic-level (eg: ints, doubles, etc) rather than a 
byte-level.The format string (*format) is of the same format as printf(). 

 

fgets(char *s, int size, FILE *stream); 

 

reads in at most size -1 characters  from  stream  and stores  them  into 
the buffer pointed to by s.  Reading stops after an EOF or a newline.  If a 
newline is read, it is stored into the buffer.  A '\0’ is stored after the last 
character in the buffer. 

 

 



Writing Files in C 
Writing is a lot like reading… 

 
fwrite(void *ptr, size_t size, size_t count, FILE *s); 

Writing of bytes with (FILE *). 

 

write(int fd, void *buf, size_t count); 

Writing of bytes with a file descriptor (int) 

 

fprintf(FILE *stream, const char *format, …); 

Formatted writing to files (works like printf()) 

 

 



Closing Files in C 
 
Always close your files! 
 
fclose(FILE *stream); 

close(int fd); 

 
write(), and especially fwrite()/fprintf(), may be buffered before being 
written out to disk. 

 

If a file is never closed after writing:  

•the new data may never be written on the actual file 

•the files may be corrupted 
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Coding Examples 

• We have 5 code examples to work on in: 

• ds/ds5/{1-5}.c 

 

• To compile using threads, make sure to use: 

• gcc 2.c -lpthread 

 

• (On 5.c, you need to include -lm as well) 


