
CS 241
Section Week #5

2/23/12

2

Topics This Section

• MP4 overview

• Function Pointers

• Pthreads

• File I/O

3

MP4

• Goal: Multi-threaded Merge Sort

• Three new programming concepts:

• Function Pointers

• Threads

• File I/O

4

MP4

• Input:

• We provide you a program to generate
input files of random unique integers

• Two parts to the MP:

• Sorting

• Merging

Part 1: [Multi-threaded sorting]

Each input file is sorted by a different thread, and the output is saved to a
file with the same name plus “.sorted”.

Ignore empty lines.

Numerical order.

Use qsort:

void qsort(void *base, size_t nmemb, size_t size,

 int(*compar)(const void *, const void *));

Pointer to a function

MP4

Part 2: [Multi-threaded merging]

Each pair of files is merged until only one is left.

A new round is started when all files in the previous one are merged,
removing duplicates along the way. (DON’T USE qsort() on MERGE)

file2.txt file3.txt file4.txt file1.txt file5.txt

tmp1 tMP3

tmp3

sorted.txt

Round 1

Round 2

Round 3

Round 4

file5.txt

file5.txt

MP4

File Input/Output

File I/O in C
MP4 requires you to read and write text files in C.

Two primary means of doing I/O in C:

 Through lightly-wrapped system calls

open(), close(), read(), write(), etc

 Through C-language standards

fopen(), fclose(), fread(), fwrite(), etc

File I/O in C
Opening a file (Method #1):

fopen(const char *filename, const char *mode);

filename: path to file to open
mode: what do you wish to do with the file?

r: read only
r+: read and write (file must already exist)

w: write (or overwrite) a file
w+: write (or overwrite) a file and allow for reading

a: append to the end of the file (works for new files, too)
a+: appends to end of file and allows for reading anywhere in the
file; however, writing will always occur as an append

File I/O in C
Opening a file (Method #2):
open(const char *filename, int flags, int mode);

filename: path to file to open

flags: what do you wish to do with the file?

One of the following is required:
O_RDONLY, O_WRONLY, O_RDWR

And any number of these flags (yo “add” these flags, simply

binary-OR them together):
O_APPEND: Similar to “a+” in fopen()

O_CREAT: Allows creation of a file if it doesn’t exist

O_SYNC: Allows for synchronous I/O (thread-safeness)

mode: what permissions should the new file have?

(S_IRUSR | S_IWUSR) creates a user read-write file.

Opening Files in C
Return value of opening a file:

Having called open() or fopen(), they will both create
an entry in the OS’s file descriptor table.

Specifics of a file descriptor table will be covered in-depth in the
second-half of CS 241.

Both open() and fopen() returns information about
its file descriptor:
open(): Returns an int.

fopen(): Returns a (FILE *).

Reading Files in C
Two ways to read files in C:
fread(void *ptr, size_t size, size_t count, FILE *s);

*ptr: Where should the data be read into?

size: What is the size of each piece of data?

count: How many pieces?

*s: What (FILE *) do we read from?

read(int fd, void *buf, size_t count);

fd: What file do we read from?

*buf: Where should the data be read into?

count: How many bytes should be read?

Reading Files in C
Reading more advancely…
fscanf(FILE *stream, const char *format, …);

Allows for reading at a semantic-level (eg: ints, doubles, etc) rather than a
byte-level.The format string (*format) is of the same format as printf().

fgets(char *s, int size, FILE *stream);

reads in at most size -1 characters from stream and stores them into
the buffer pointed to by s. Reading stops after an EOF or a newline. If a
newline is read, it is stored into the buffer. A '\0’ is stored after the last
character in the buffer.

Writing Files in C
Writing is a lot like reading…

fwrite(void *ptr, size_t size, size_t count, FILE *s);

Writing of bytes with (FILE *).

write(int fd, void *buf, size_t count);

Writing of bytes with a file descriptor (int)

fprintf(FILE *stream, const char *format, …);

Formatted writing to files (works like printf())

Closing Files in C

Always close your files!

fclose(FILE *stream);

close(int fd);

write(), and especially fwrite()/fprintf(), may be buffered before being
written out to disk.

If a file is never closed after writing:

•the new data may never be written on the actual file

•the files may be corrupted

16

Coding Examples

• We have 5 code examples to work on in:

• ds/ds5/{1-5}.c

• To compile using threads, make sure to use:

• gcc 2.c -lpthread

• (On 5.c, you need to include -lm as well)

