CS 241
Section Week

Topics This Section

MP4 overview
~unction Pointers
Pthreads

-ile 1/0

MP4

* Goal: Multi-threaded Merge Sort

* Three new programming concepts:
* Function Pointers
* Threads
* Filel/O

MP4

* |Input:

* We provide you a program to generate
input files of random unique integers

* Two parts to the MP:
* Sorting
* Merging

MP4

Part 1: [Multi-threaded sorting]

Each input file is sorted by a different thread, and the output is saved to a
file with the same name plus V. sorted”.

lgnore empty lines.

Numerical order.

Use gsort:

void gsort(void *base, size t nmemb, size t size,

int (*compar) (const void *, const wvoid ¥*));

Pointer to a function

MP4

Part 2: [Multi-threaded merging]
Each pair of files is merged until only one is left.

A new round is started when all files in the previous one are merged,
removing duplicates along the way. (DON’T USE gsort() on MERGE)

filel.txt file2.txt file3.txt file4.txt file5.txt Round 1
! l ‘ll | l ‘ll | l)
tmp1l tMP3 file5.txt : Round 2
| l | l
tmp3 file5.txt Round 3
l |

File Input/Output

File /O InC

MP4 requires you to read and write text files in C.

Two primary means of doing I/0 in C:

Through lightly-wrapped system calls

open(), close(), read(), write(), etc

Through C-language standards
fopen(), fclose(), fread(), fwrite(), etc

File /O InC

Opening a file (Method #1):

fopen (const char *filename, const char *mode);

filename: path to file to open

mode: what do you wish to do with the file?
r: read only
r+: read and write (file must already exist)

w: write (or overwrite) a file
w+: write (or overwrite) a file and allow for reading

a: append to the end of the file (works for new files, too)

a+: appends to end of file and allows for reading anywhere in the
file; however, writing will always occur as an append

File /O InC

Opening a file (Method #2):

open (const char *filename, int flags, int mode) ;

filename: path to file to open
flags: what do you wish to do with the file?

One of the following is required:
O_RDONLY, O_WRONLY, O_RDWR

And any number of these flags (yo “add” these flags, simply
binary-OR them together):

O_APPEND: Similar to “a+” in fopen()
O_CREAT: Allows creation of a file if it doesn’t exist
O_SYNC: Allows for synchronous I/0O (thread-safeness)

mode: what permissions should the new file have?
(S_IRUSR | S_IWUSR) creates a user read-write file.

Opening Filesin C
Return value of opening a file:
Having called open () or fopen () , they will both create

an entry in the OS’s file descriptor table.

Specifics of a file descriptor table will be covered in-depth in the
second-half of CS 241.

Both open () and fopen () returnsinformation about
its file descriptor:

open () : Returns anint.

fopen() : Returnsa (FILE ¥*).

Reading Files in C

Two ways to read files in C:

fread(void *ptr, size t size, size_t count, FILE *s);

*ptr: Where should the data be read into?
size: What is the size of each piece of data?
count: How many pieces?

*s: What (FILE *) do we read from?
read (int fd, void *buf, size t count);
fd: What file do we read from?

*buf: Where should the data be read into?
count: How many bytes should be read?

Reading Files in C

Reading more advancely...

fscanf (FILE *stream, const char *format, ..);

Allows for reading at a semantic-level (eg: ints, doubles, etc) rather than a
byte-level.The format string (*format) is of the same format as printf ().

fgets (char *s, int size, FILE *stream);

reads in at most size -1 characters from stream and stores them into
the buffer pointed to by s. Reading stops after an EOF or a newline. If a
newline is read, it is stored into the buffer. A '\0’ is stored after the last
character in the buffer.

Writing Filesin C

Writing is a lot like reading...

fwrite (void *ptr, size t size, size t count, FILE *s);
Writing of bytes with (FILE *).

write(int fd, void *buf, size t count);

Writing of bytes with a file descriptor (int)

fprintf (FILE *stream, const char *format, ..);

Formatted writing to files (works like print£ ())

Closing Filesin C

Always close your files!

fclose (FILE *stream) ;
close (int £4d) ;

write (), andespecially fwrite () /fprint£ (), may be buffered before being
written out to disk.

If a file is never closed after writing:
*the new data may never be written on the actual file
*the files may be corrupted

Coding Examples

* We have 5 code examples to work on in:
e ds/ds5/{1-5}.c

* To compile using threads, make sure to use:
e gcc 2.c -Ipthread

* (On 5.c, you need to include -Im as well)

