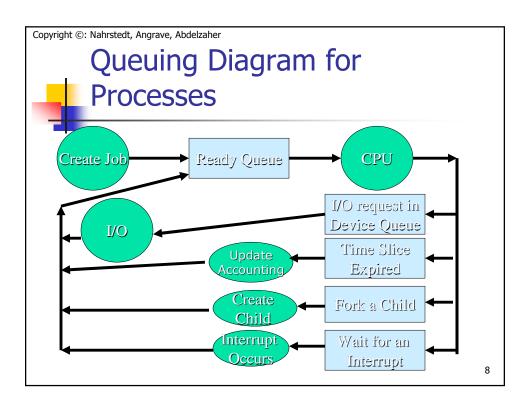


Content of This Lecture

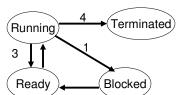
- Why CPU scheduling?
- Basic scheduling algorithms
 - FIFO (FCFS)
 - Shortest job first
 - Round Robin
 - Priority Scheduling
- Goals:
 - Understand how your program is executed on the machine together with other programs


Context Switch

- Switch CPU from one process to another
- Performed by scheduler
- It includes:
 - save PCB state of the old process;
 - load PCB state of the new process;
 - Flush memory cache;
 - Change memory mapping (TLB);
- Context switch is expensive (1-1000 microseconds)
 - No useful work is done (pure overhead)
 - Can become a bottleneck
- Need hardware support

When to schedule?

- A new process starts
- The running process exits
- The running process is blocked
- I/O interrupt (some processes will be ready)
- Clock interrupt (every 10 milliseconds)



Preemptive vs. Nonpreemptive scheduling

Non-preemptive scheduling:

- The running process keeps the CPU until it voluntarily gives up the CPU
 - process exits
 - switches to blocked state
 - 1 and 4 only (no 3)

Preemptive scheduling:

 The running process can be interrupted and must release the CPU (can be forced to give up CPU)

0

Copyright ©: Nahrstedt, Angrave, Abdelzaher

Scheduling Objectives

- Fairness (equitable shares of CPU)
- Priority (most important first)
- Efficiency (make best use of equipment)
- Encouraging good behavior (can't take advantage of the system)
- Support for heavy loads (degrade gracefully)
- Adapting to different environments (interactive, real-time, multi-media)

Performance Criteria

- Fairness
- Efficiency: keep resources as busy as possible
- Throughput: # of processes that completes in unit time
- Turnaround Time (also called elapse time)
 - amount of time to execute a particular process from the time its entered
- Waiting Time
 - amount of time process has been waiting in ready queue
- Response Time
 - amount of time from when a request was first submitted until first response is produced.
 - predictability and variance
- Proportionality:
 - meet users' expectation
- Meeting Deadlines: avoid losing data

11

Copyright ©: Nahrstedt, Angrave, Abdelzaher

Process Profiles

- I/O Bound
 - Does too much I/O to keep CPU busy
- CPU Bound
 - Does too much computation to keep I/O busy
- Process Mix
 - Scheduling should load balance between I/O bound and CPU-bound processes
 - Ideal would be to run all equipment at 100% utilization but that would not necessarily be good for response time

Simple Processor Scheduling Algorithms

- Batch systems
 - First Come First Serve (FCFS)
 - Shortest Job First
- Interactive Systems
 - Round Robin
 - Priority Scheduling
 - **=** ...

13

Copyright ©: Nahrstedt, Angrave, Abdelzaher

First Come First Serve (FCFS)

- Process that requests the CPU FIRST is allocated the CPU FIRST.
- Also called FIFO
- Preemptive or Non-preemptive?
- Used in Batch Systems
- Implementation
 - FIFO queues
 - A new process enters the tail of the queue
 - The schedule selects from the head of the queue.

FCFS Example

Process	Duration	Order	Arrival Time
P1	24	1	0
P2	3	2	0
P3	4	3	0

The final schedule:

P1 (24) P2 (3) P3 (4)
0 24 27

P1 waiting time: 0 P2 waiting time: 24

The average waiting time:

P3 waiting time: 27 (0+24+27)/3 = 17

What if P1 arrives at time 2

15

Copyright ©: Nahrstedt, Angrave, Abdelzaher

Problems with FCFS

- Non-preemptive
- Not optimal AWT
- Cannot utilize resources in parallel:
 - Assume 1 process CPU bounded and many I/O bounded processes
 - result: Convoy effect, low CPU and I/O Device utilization
 - Why?

- Why Scheduling?
- Scheduling objectives
- Scheduling Algorithms
 - FCFS (FIFO)