
Networking II

CS 241

Nov. 11, 2013

OSI Protocol Stack / “OSI Model”

Physical

Data Link

Network

Transport

Session

Presentation

Application

Network Packet Encapsulation

Source: http://www.tcpipguide.com/free/t_IPDatagramEncapsulation.htm

Understanding IP
• The network layer provides “host-to-host”

connectivity.
– In IP, done via IP Addresses

• Globally unique 32-bit numbers

• Usually written as four 8-bit integers: 127.0.0.1
• IPv6: 128-bits, written as eight sets of 16-bit hexadecimal numbers

(ex: 2001:0DBB:AC10:FE01:0000:0000:0000:C3D4
 == 2001:0DBB:AC10:FE01::C3D4)

– IP addresses are hard to remember!
• Domain names associate easy-to-remember names

that can be translated to IP addresses via the DNS
protocol.

Understanding TCP

• TCP Provides

–

–

•

•

•

•

–

• TCP Doesn’t Provide

–

–

–

•

•

…while the session is active.

Understanding UDP

• UDP Provides

–

• UDP Doesn’t Provide

–

–

–

–

–

–

–

TCP Session

• When a client connects to a host on TCP, a
“TCP session” is initiated.

– Requires a three-way handshake before any data
can be sent on the TCP socket.

Client Server

TCP Sessions

server client

TCP/80

Network Vocabulary

• Socket Address

– Complete identification of the socket you are
connecting to. Made up of three pieces:

• Protocol (ex: TCP)

• Network Address (ex: 127.0.0.1)

• Port Number (ex: 80)

• Port Number

– Globally shared system resource, 16-bit integer

– A port number can only be used by one process at
a time on the entire system

Network socket

• A network socket is stream-based IPC.

– Similar to a pipe:

• Uses the file descriptor interface

• Is stream-based, not segment- or message-based

– Different from a pipe:

• The file descriptor is bi-directional (read and write)

• Reliability based on the transport protocol used

• Special type of “server socket” that listens for incoming
connections from remove hosts and does not transmit
any application data!

Creating a network socket
socket(): Create an endpoint for communication

int socket(int network_protocol,

 int transport_protocol,

 int sub_protocol)

 IP: AF_INET IPv6: AF_INET6

 TCP: SOCK_STREAM UDP: SOCK_DGRAM

Setting up a server socket
getaddrinfo(): network address translation

- Translates a hostname (IP address or domain name),
port, and protocol into a socket address struct.

bind(): binds an socket address to a socket

- Required in order to know what port number your
socket will be listening for new connections

listen(): places the socket in a listening state

Using Sockets
accept(): accept a communication on a socket

int accept(int sockfd,

 struct sockaddr *addr,

 socklen_t *addrlen);

connect(): initiate a connection on a socket

int connect(int sockfd,

 struct sockaddr *addr,

 socklen_t *addrlen);

