
IPC V: shm and signals

CS 241

Nov. 6, 2013

fd not closed
int fds[2][2];

for (i = 0; i < 2; i++) {

 pipe(fds[i]);

 int read_fd = fd[i][0], write_fd = fd[i][1];

 pid_t pid = fork();

 if (pid == 0) {

 close(read_fd);

 /* ... */

 }

 else if (pid > 0) {

 close(write_fd);

 /* ... */

 }

 /* ... */

}

Persistent Shared Memory

• Older systems will use persistent shared
memory for IPC

– System call: shmget()

– Downside: Stays in RAM until destroyed, even if
the program exits

• Modern solutions:

– Use mmap() with a file

• Data will be saved to the file when the program exits

• Does not waste RAM while program is not running

signals

• Signals provide asynchronous notification of
events.

– Each signal will take some action.

– A programmer can define the action*, otherwise a
default action will be taken.

• *: Except for SIGKILL and SIGSTOP

• Signals are the only mechanism where two
sequential lines of code may be interrupted.

signal generation
• What kind of events?

 Signal Event Default Action

SIGINT “Interactive Attention” (usually Ctrl+C) Process termination

SIGSEGV Non-mapped Memory Access (seg. fault) Process termination

SIGTERM Request for process termination (eg:
system is being shut down)

Process termination

SIGCHLD Child process terminated, stopped, or
continued

Nothing (ignored)

SIGSTOP* Stops process execution Stop

SIGKILL* Kills process Process termination

SIGALRM System alarm clock expired Process termination

SIGUSR1 User-defined event Process termination

SIGUSR2 User-defined event Process termination

Replacing the Signal Handler
The easy way:

#include <signal.h>

typedef void (*sighandler_t)(int)

sighandler_t signal(

 int signum,

 sighandler_t handler)

Programming Signals

int main()

{

 while (1) { }

}

Delivery of Signals

• As part of its process image, every process has
a bitmap of all the signals.

– As part of a context switch, the signal bitmap is
checked for any pending signals.

• Implication: A signal may be sent multiple
times but may only be delivered once!

0 0

SIGINT

SIGSEGV

0 0

SIGKILL

SIGALRM

1 0

SIGUSR1

SIGUSR2

...

We can send signals, too...

kill – send a signal to a process

int kill(pid_t pid, int sig)

Implications of Signals

• What we know:

– Signals can be delivered at any time,

– The delivery of a signal may result in us calling a
signal handler function,

– …what happens if a signal is delivered while we
are in our signal handler?

• hander()  handler()  handler()  …?

Signal Mask

• A signal mask is a mask that will preserve the
existence of a signal, but block it from being
handled until the mask is removed.

0 0

INT QUIT

0 0

SEGV TERM

1 0

USR1 USR2

...
Signal Bitmap:

Signal Mask:
1 0 1 0 1 0 ...

Every process has its own unique signal bitmap and mask!

Modifying the Signal Mask

Examine and change blocked signals:

sigprocmask(int how,

 const sigset_t *set,

 sigset_t *oldset);

Manipulate the sigset_t set:

sigemptyset(sigset_t *set);

sigfullset (sigset_t *set);

sigaddset (sigset_t *set, int sig);

sigdelset (sigset_t *set, int sig);

sigismember(sigset_t *set, int sig);

How?
• Using the easy way to handle a signal, using
signal():

– The signal mask applied to our signal handler blocks only
the signal that was delivered.

• The proper way:

struct sigaction {

 void (*sa_handler)(int);

 sigset_t sa_mask;

 ...

};

int sigaction(

 int signum,

 struct sigaction *act,

 struct sigaction *oldact);

