
IPC IV: epoll

CS 241

Nov. 4, 2013

I/O Multiplexing

• By default: read() / fread() are blocking calls.

– …if no data is available, the process will be moved
to the BLOCKED state until data is available.

• In order to read() from multiple files in one
thread at one time, I/O multiplexing is
required.

– epoll(): monitor multiple file descriptors, waiting
until one or more of the file descriptors become
"ready“.

epoll() Overview

• Usage of epoll():

– Create an epoll instance via epoll_create()

– Register each file descriptor to watch via
epoll_ctl()

– Use epoll_wait() to block until an fd is ready

– (Replaces both select() and poll() system calls.)

epoll() Overview
• epoll_ctl():

int epoll_ctl(int epfd, int op, int fd,

 struct epoll_event *event);

op: EPOLL_CTL_ADD: Add to the epoll set

 EPOLL_CTL_MOD: Modify the epoll set

 EPOLL_CTL_DEL: Delete from the epoll set

event:

 struct epoll_event {

 uint32_t events; /* Epoll events */

 epoll_data_t data; /* User data */

 };

 typedef union epoll_data {

 int fd;

 ... // ...other stuff we will not use.

 } epoll_data_t;

epoll() Example

0s:

1s:

2s:

3s:

Process 1

A

D

Process 2

B

C

epoll() Example
void one(int write_fd)

{

 sleep(1);

 write(write_fd, "B", 1);

 sleep(1);

 write(write_fd, "C", 1);

 close(write_fd);

}

void two(int write_fd)

{

 write(write_fd, "A", 1);

 sleep(3);

 write(write_fd, "D", 1);

 close(write_fd);

}

void main() {

}

