
IPC III: mmap, fds

CS 241

Nov. 1, 2013

File-backed mmap
void main() {

 /* For a file-backed mmap, we need a fd... */

 int fd = open("apple.txt", O_RDWR);

 /* We also to know the length of the file... */

 // Seek to the end of the file and record how

 // far into the file we went (eg: length of file)

 int file_len = fseek(fd, 0, SEEK_END);

 // Rewind the file

 fseek(fd, 0, SEEK_SET);

 /* Create the mmap */

 void *ptr = mmap(NULL,

 file_len,

 PROT_READ | PROT_WRITE,

 MAP_SHARED,

 fd,

 0);

Anonymous mmap

• An anonymous mmap is effectively a malloc()
that survives a fork().

• Same system call, with three differences:

– offset field is ignored

– fd must be -1

– flags must contain MAP_ANONYMOUS

Anonymous mmap
void main() {

 /* Simply create the mmap */

void main() {

}

void main() {

}

Files on Linux

• In the beginning of this semester, we saw:

 open() / read() / write() / close()

• There is also:

 fopen() / fread() / fwrite() / fclose()

 fprintf() / fscanf() / getline()

File Descriptor

• A file descriptor is a single, universal interface
on Linux that works for every stream-based
interface.

–

–

–

File Descriptor Table

• Each process maintains its own file descriptor
table that maps a fd to the underlying stream.

[3]

…

[0]

[1]

[2]

Every entry has some properties…

• Every stream in Linux has at least one
property:

–

• Some streams have other properties:

–

–

–

File Descriptor vs (FILE *)

• In Windows and other OSs, file descriptors
works slightly differently.

• The “C library” uses a (FILE *) as the data
structure to store system-specific file
information.

– FILE *  fd
• int fileno(FILE *stream)

– fd  FILE *
• FILE *fdopen(int fd)

I/O Multiplexing

• By default: read() / fread() are blocking calls.

– …if no data is available, the process will be moved
to the BLOCKED state until data is available.

• In order to read() from multiple files in one
thread at one time, I/O multiplexing is
required.

– epoll(): monitor multiple file descriptors, waiting
until one or more of the file descriptors become
"ready“.

epoll() Overview

• Usage of epoll():

– Create an epoll instance via epoll_create()

– Register each file descriptor to watch via
epoll_ctl()

– Use epoll_wait() to block until an fd is ready

– (Replaces both select() and poll() system calls.)

