Classical Synchronization |

CS 241
Oct. 18, 2013

Dinning Philosophers Problem

e

Q Erin Bob Q
Mutual Exclusion?
/ \ Hold and Wait?

Dan Charlie]
O Q No Preemption?
Circular Wait?
Deadlock?

Progress?

Dinning Philosophers Problem

e

Q Erin Bob Q
Mutual Exclusion?
/ \ Hold and Wait?

Dan Charlie]
O Q No Preemption?
Circular Wait?
Deadlock?

Progress?

Dinning Philosophers Problem

e

Q Erin Bob Q
Mutual Exclusion?
/ \ Hold and Wait?

Dan Charlie]
O Q No Preemption?
Circular Wait?
Deadlock?

Progress?

Dinning Philosophers Problem

e

Q Erin Bob Q
Mutual Exclusion?
/ \ Hold and Wait?

Dan Charlie]
O Q No Preemption?
Circular Wait?
Deadlock?

Progress?

Classical Synchronization

* Four classical problems

Producer-Consumer Problem

* The producer-consumer problem is an
instance of a blocking bounded queue.

— Producers add to the queue
— Consumers consume from the queue

void produce (void *item) ({ void* consume () ({
sem wait(&sem empty spots); sem wait(&sem filled spots);
pthread mutex lock (&mutex) ; pthread mutex lock (&mutex) ;
queue_push (item) ; void *item = queue pop (item) ;
pthread mutex unlock (&mutex) ; pthread mutex unlock (&mutex) ;
sem post(&sem filled spots); sem post(&sem empty spots);

} return item:;

Readers-Writers Problem

* Consider multiple processes accessing a single
file, some reading some writing.

— Multiple processes can read simultaneously so
long as no process is writing.

— No processes can write while a process is reading.
— Only one process can write at a time.

* How do we develop a fair algorithm to
implement these rules?

void read() { void writer() ({

/* Read from the file */ /* Write to the file */

void read() { void writer() ({

/* Read from the file */ /* Write to the file */

void read() { void writer() ({

/* Read from the file */ /* Write to the file */

Readers-Writers Solutions

e Solution #1:

e Solution #2:

e Solution #3:

