
Synchronization III

CS 241

Oct. 16, 2013

Review

• Mutex: A simple “lock”

– pthread_mutex_lock()

– pthread_mutex_unlock()

• Conditional Variable: “monitor” primitive

– pthread_cond_wait()

– pthread_cond_signal()

– pthread_cond_broadcast()

void lock() {

}

void unlock() {

}

void wait() {

}

void post() {

}

Semaphore

• A semaphore is a “counting” mutex

– sem_wait()

– sem_post()

Blocking Bounded Queue (v2)
void blocking_queue_push(queue_t *q, void *data) {

 /* queue_push() adds the element to the queue;

 queue_push() is not thread-safe */

 queue_push(q, data);

}

Blocking Bounded Queue (v2)
void *blocking_queue_pop(queue_t *q) {

 /* queue_pop() pops the top element;

 queue_pop() is not thread-safe */

 void *data = queue_pop(q);

}

Deadlock
void up() {

 pthread_mutex_lock(&mutex);

 ct++;

}

Four Conditions of Deadlock

• In order to guarantee deadlock, four
conditions must be true:

–

–

–

–

Dinning Philosophers Problem

• Five philosophers: Five silent philosophers sit
around a table with a bowl of spaghetti.

• Five forks: A fork is placed between each pair of
adjacent philosophers.

• Two states: Philosophers alternate between
thinking and eating.

• Condition: To eat, a philosopher must have two
forks: the fork to his right and the fork to his left.

Deadlock

Mutual Exclusion?

Hold and Wait?

No Preemption?

Circular Wait?

