Synchronization

CS 241
Oct. 9, 2013



int ct = 0;
int X = 10000000;

void *up(void *ptr) {
int 1;
for (i = 0; i < X; i++)
ct++;

void main() {
pthread t tl1, t2;
pthread create(&tl, NULL, up, NULL);
pthread create(&t2, NULL, up, NULL);

printf ("Count: %d\n", ct);



Critical Section

* A critical section is a piece of code that:



int ct = 0;
int X = 10000000;

void *up(void *ptr) {
int 1i;
for (i = 0; i < X; i++)

atomic { ct++; }
} But atomic does not exist in C!

void main() {
pthread t tl1, t2;
pthread create(&tl, NULL, up, NULL);
pthread create(&t2, NULL, up, NULL);

printf ("Count: %d\n", ct);



Solution #1: Single Lock Variable

int lock = 0;

/* Running by two threads: Tl and T2 */
void *up(void *ptr) {

int 1i;

for (1 = 0; 1 < X; i++) {

ct++;



Critical Section

A correct critical section must meet three
conditions:



Solution #2: Turns w/ Strict Alternation

int turn;

/* Running by two threads: Tl and T2 */
void *up(void *ptr) {

int 1i;

for (1 = 0; 1 < X; i++) {

ct++;



Solution #3: Other Flag

int owner[2] = { false, false };

/* Running by two threads: Tl and T2 */
void *up(void *ptr) {

int 1i;

for (1 = 0; 1 < X; i++) {

ct++;



Solution #4: Two Flag

int owner[2] = { false, false };

/* Running by two threads: Tl and T2 */
void *up(void *ptr) {

int 1i;

for (1 = 0; 1 < X; i++) {

ct++;



Solution #5: Two Flags and Turns!

int owner[2] = { false, false };

/* Running by two threads: Tl and T2 */
void *up(void *ptr) {

int 1i;

for (1 = 0; 1 < X; i++) {

ct++;



Peterson’s Solution

 The previous solution (#5, two flags and turn)
is known as Peterson’s Solution.

— Correctly implements a critical section
— Uses only software
— Preforms busy waiting

* Solution: Use hardware operations to
implement a better solution.

— Requires the OS-managed resources



Synchronization Primitives

* Operating systems provide synchronization
primitives to allow for a single thread to have
exclusive access to a region of code.

* Three basic types:



