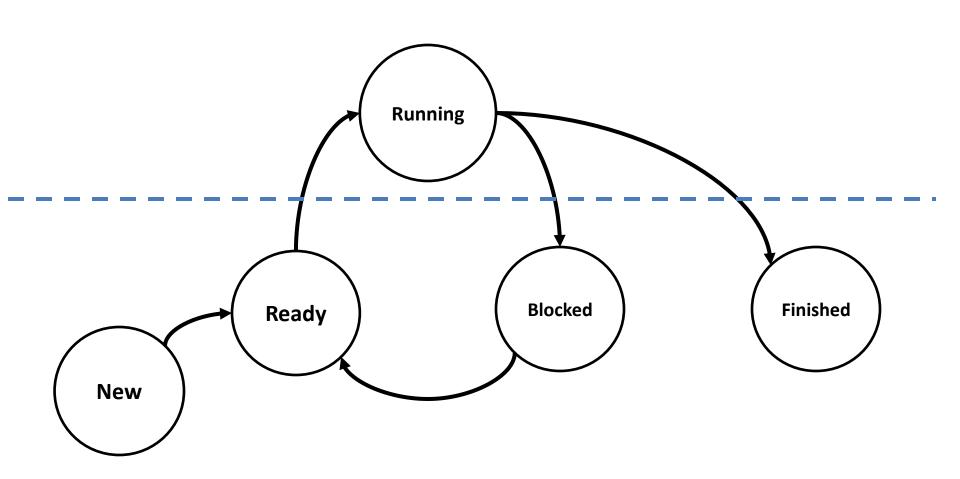
# Speedup and Scheduling

CS 241

Oct. 4, 2013

### Speedup


• One of the greatest advantages of parallelism is to speed up computation. We formally define this speedup as:  $S_P = \frac{T_1}{T_P}$ 

- P: The number of processors
- $-\mathbf{S}_{\mathbf{p}}$ : The speedup for a given number of processors
- $T_1$ : The execution time of a sequential algorithm
- T<sub>P</sub>: The execution time of a parallel algorithm on P processors

### Ideal Speedup:

# Scheduling

When do we need scheduling?



# Scheduling

Basic scheduling decision:

## High-Level Scheduling Example

• Processes: 1 2

• Schedule:



## **Scheduling Goals**

• Throughput:

• Latency:

• Fairness:

### **Quantitative Metrics**

Waiting Time:

Turnaround Time:

Response Time:

### FCFS: First Come First Serve

 FCFS: Schedule tasks in the order they arrived at the scheduler.

| Process | Duration | Priority | Arrival Time |
|---------|----------|----------|--------------|
| P1      | 24       | 2        | 3            |
| P2      | 3        | 6        | 0            |
| Р3      | 4        | 3        | 7            |

#### **Schedule:**

Time: 0

| Process  | Waiting Time | Turnaround | Response |
|----------|--------------|------------|----------|
| P1       |              |            |          |
| P2       |              |            |          |
| Р3       |              |            |          |
| Average: |              |            |          |

### SJF: Shortest Job First

• SJF: Scheduling the job with the shortest running time first (non-preemptive).

| Process | Duration | Priority | Arrival | Waiting<br>Time | Turnaround<br>Time | Response<br>Time |
|---------|----------|----------|---------|-----------------|--------------------|------------------|
| P1      | 6        | 2        | 0       |                 |                    |                  |
| P2      | 8        | 6        | 0       |                 |                    |                  |
| Р3      | 7        | 3        | 0       |                 |                    |                  |
| P4      | 3        | 5        | 0       |                 |                    |                  |

#### **Schedule:**

Time: 0

## PRI: Fixed Priority Scheduling

 PRI: Schedule the job with the highest priority first. (Low number → Higher priority)

| Process | Duration | Priority | Arrival | Waiting<br>Time | Turnaround<br>Time | Response<br>Time |
|---------|----------|----------|---------|-----------------|--------------------|------------------|
| P1      | 6        | 2        | 0       |                 |                    |                  |
| P2      | 8        | 6        | 0       |                 |                    |                  |
| Р3      | 7        | 3        | 0       |                 |                    |                  |
| P4      | 3        | 5        | 0       |                 |                    |                  |

#### **Schedule:**

Time: 0

# Scheduling Example

- Initially, two processes in the scheduler:
  - P1( duration = 4, priority = 1, arrival = 0 )
  - P2( duration = 100, priority = 100, arrival = 0 )
- Every three seconds, a new process arrives:
  - $P_x(duration = 4, priority = 1, arrival = 0)$

- FCFS:
- SJF:
- PRI:

### Starvation

- A scheduling algorithm may cause starvation
  if, for any job, it cannot guarantee that the job
  will run within a finite about of time.
  - This is not deadlock!

## Advantages / Disadvantages

• FCFS:

• SJF:

• PRI: