
Processes II

CS 241

Sept. 25, 2013

exec()

• fork(): Duplicates the current process

– fork() “returns twice”, once as the parent (original)
and once as the child process!

exec()

• exec(): Executes a file

– Replaces the current process image with a new
process image.

• exec() is not a function, but the common
name for a family of functions

– All functions are of the type: exec_____()

• +“l” (lowercase L): Send arguments as a list.

• +”v”: Send arguments as a vector (array).

• +”e”: Send environmental variables (not used in 241).

• +”p”: Allow searching for the file name.

main()
• When a new file is executed, the execution begins

with the main() function.

• Just like in C++
– void main()
– int main(int argc, const char *argv[]);

• Remember: argv is a NULL terminated array of C-
strings!
– argv[0]: Process name
– argv[1]: First command line argument
– argv[argc – 1]: Last command line argument
– argv[argc]: NULL

Example: execlp()

• execv():
• +“l” (lowercase L): Send arguments as a list.

• +”v”: Send arguments as a vector (array).

• +”e”: Send environmental variables (not used in 241).

• +”p”: Allow searching for the file name.

int execv(const char *path, char *const arg[]);

Example:

char *array[] = { "/bin/ls", NULL };

execv("/bin/ls", array);

Example #1
void main() {

 char *array[] = { "/bin/ls", NULL };

 execv(“/bin/ls", array);

}

wait()

• wait(): Waits for a child process to terminate.

– wait(): Waits for any child process.

– waitpid(): Waits for a specific process.

• A call to wait() retrieves the exit code for a
process and allows the OS to clean up the
process.

– exit code: Value returned from main(); integer.

• 0: Program finished without error.

• Non-0: Program finished with an error.

Example #2
void main() {

 char *array[] = { "/bin/ls", NULL };

 pid_t pid = fork();

 if (pid == 0)

 execv("/bin/ls", array);

}

Zombies and Orphans

• A process is a zombie if it is a child process of
a parent who has not wait()’d on it.

– Zombie processes are still in memory, “wastes”
RAM.

• A process is an orphan if it’s a child process of
a parent that has exited.

– When a child no longer has a parent, it gets re-
parented by the init process (pid == 1).

