
Processes

CS 241

Sept. 23, 2013

What is a process?

• A process is an instance of a running program.

– A process is not the binary, it is an instance of the
binary running!

• A process provides two key abstractions:

– Private virtual address space

• Each process has its own virtual address space (0x0 
0xff…ff)… all the memory stuff we just covered!

– Logical control flow

• Each program seems to have continued, exclusive use
of the CPU(s)

In the beginning…

• When your computer starts:

1. The CPU runs the system’s firmware:

• Old standard: BIOS

• Newer standard: EFI / UEFI

2. The firmware will run a Power-On System Test
(POST) to check the hardware.

3. The firmware will pass control off to the
operating system.

• When the OS starts, it initializes a single process.

Process #1

• Every OS has an init process, the initial
process on the system after boot.

• In Linux, there is only one primary way to
create a new process:
 fork()

fork()

• fork() creates a new process by duplicating
the calling process. The new process, referred
to as the child, is a duplicate of the calling
process, referred to as the parent.

– Since fork() creates a new process, fork()
returns twice! Return value:

• 0: child process

• >0: parent process (returns the ID of the child)

Example #1
void main() {

 pid_t pid = fork();

 if (pid == 0)

 printf("Child process\n");

 else

 printf("Parent process\n")

}

Example #2
void main() {

 int i = 0;

 for (i = 0; i < 3; i++)

 fork();

 printf("Illinois\n");

}

Example #3
void main() {

 int i = 0;

 for (i = 0; i < 3; i++) {

 fork();

 printf("%d\n", i);

 }

 printf("Illinois\n");

}

Example #4
void main() {

 int i = 0;

 for (i = 0; i < 10; i++)

 if (fork())

 break;

}

