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Security is a problem 

 Networked systems are 

 Shared by many with differing goals and 

interests 

 No security = potential compromise! 

 Exposure of your information 

 Encryption is not enough! 

 Still need data integrity, originality, and 

timeliness! 
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Basic Requirements for 

Secure Communication 

 Availability 

 Will the network deliver data? 

 Infrastructure compromise, DDoS 

 Authentication 

 Who is this person/machine? 

 Spoofing, phishing 

 Integrity 

 Do messages arrive in original form? 
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Basic Requirements for 

Secure Communication 

 Confidentiality 

 Can adversary read the data? 

 Sniffing, man-in-the-middle 

 Provenance 

 Who is responsible for this data? 

 Forging responses, denying responsibility 

 Not who sent the data, but who created it 
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Other Desirable Security 

Properties 

 Authorization 

 Is user/machine allowed to do this action? 

 Access controls 

 Accountability/Attribution 

 Who did this activity? 

 Audit/forensics 

 What occurred in the past? 

 A broader notion of accountability/attribution 
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Other Desirable Security 

Properties 

 Appropriate use 

 Is action consistent with policy? 

 e.g., no spam; no games during business hours; 

etc. 

 Freedom from traffic analysis 

 Can someone tell when I am sending and to 

whom? 

 Anonymity 

 can someone tell I sent this packet? 
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Basic Forms of Cryptography 
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Confidentiality through 

Cryptography 

 Cryptography 

 Communication over insecure channel in the 

presence of adversaries 

 Studied for thousands of years 

 See Singh’s The Code Book for an excellent 

history 

 Central goal 

 How to encode information so that an adversary 

can’t extract it …but a friend can 
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Confidentiality through 

Cryptography 

 General premise 

 A key is required for decoding 

 Give it to friends, keep it away from attackers 

 Two different categories of encryption 

 Symmetric 

 Efficient, requires key distribution 

 Asymmetric (Public Key) 

 Computationally expensive, but no key distribution 

problem 
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Symmetric Key Encryption 

 Same key for encryption and decryption 

 Both sender and receiver know key 

 But adversary does not know key 

 For communication, problem is key distribution 

 How do the parties (secretly) agree on the key? 

 What can you do with a huge key?  

 One-time pad 

 Huge key of random bits 

 To encrypt/decrypt: just XOR with the key! 

 Provably secure!    …. provided: 

 You never reuse the key…and it really is random/unpredictable 

 Spies actually use these 
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Using Symmetric Keys  

 Both the sender and the receiver use the 

same secret keys 
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Encrypt with 

secret key 

Decrypt with 

secret key 

Plaintext Plaintext 

Ciphertext 
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Asymmetric Encryption (Public 

Key) 

 Idea  

 Use two different keys, one to encrypt (e) 

and one to decrypt (d) 

 A key pair 

 Crucial property 

 knowing e does not give away d 

 Therefore e can be public 

 Everyone knows e! 
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Asymmetric Encryption (Public 

Key) 

 Alice wants to send to Bob 

 Fetch Bob’s public key (say from Bob’s 

home page)  

 Encrypt message with Bob’s public key 

 Alice can’t decrypt what she’s sending 

to Bob … 

 …  but then, neither can anyone else 

(except Bob) 
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Public Key / Asymmetric 

Encryption 

 Sender uses receiver’s public key 

 Advertised to everyone 

 Receiver uses complementary private key 

 Must be kept secret 
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Works in Reverse Direction 

Too! 

 Sender uses his own private key 

 Receiver uses complementary public key 

 Allows sender to prove he knows private key 
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Realizing Public Key 

Cryptography 

 Invented in the 1970s (probably even as early as 

the 1960s) 

 Revolutionized cryptography 

 How can we construct an encryption/decryption 

algorithm with public/private properties?  

 Answer: Number Theory 

 Most fully developed approach: RSA 

 Rivest / Shamir / Adleman, 1977; RFC 3447 

 Based on modular multiplication of very large integers 

 Very widely used (e.g., SSL/TLS for https) 
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Cryptographic Toolkit 

CS 241 © CS 241 Staff - University of Illinois 17 



Cryptographic Toolkit 

 Confidentiality: Encryption 

 Integrity: ? 

 Authentication: ? 

 Provenance: ? 
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Integrity: Cryptographic 

Hashes 

 Sender computes a digest of message m,  

 i.e., H(m) 

 H() is a publicly known hash function 

 Send m in any manner 

 Send digest d = H(m) to receiver in a secure way 

 Using another physical channel 

 Using encryption (why does this help?)  

 Receive m and d 

 Receiver re-computes H(m) to see whether result agrees 

with d 

CS 241 © CS 241 Staff - University of Illinois 19 



Operation of Hashing for 

Integrity 
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Cryptographically Strong 

Hashes 

 Hard to find collisions 

 Adversary can’t find two inputs that produce same hash 

 Hard to alter message without modifying digest 

 Can succinctly refer to large objects 

 

 Hard to invert 

 Given hash, adversary can’t find input that produces it 

 Can refer obliquely to private objects (e.g., passwords) 

 Send hash of object rather than object itself 
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Effects of Cryptographic 

Hashing 
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Cryptographic Toolkit 

 Confidentiality: Encryption 

 Integrity: Cryptographic Hash 

 Authentication: ? 

 Provenance: ? 
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Public Key Authentication 

 Each party only knows the 

other’s public key 

 No secret key need be 

shared 

 A encrypts a nonce 

(random number) x using 

B’s public key 

 B proves it can recover x 

 A can authenticate itself to 

B in the same way 
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Cryptographic Toolkit 

 Confidentiality: Encryption 

 Integrity: Cryptographic Hash 

 Authentication: Decrypting nonce 

 Provenance: ? 

 

CS 241 © CS 241 Staff - University of Illinois 25 



Digital Signatures 

 Alice publishes public key KE 

 Prove she is Alice! 

 Send a message x encrypted with her private 

key KD 

 Anyone w/ public key KE can recover x, verify 

that Alice must have sent the message 

 It provides a digital signature 

 Alice can’t deny later deny it  non-repudiation 
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RSA Crypto & Signatures 
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Our Crypto Toolkit 

 Secure key distribution 

 Symmetric ciphers (e.g., AES) offer fast, 

presumably strong confidentiality 

 Public key cryptography  

 No need of secure key distribution 

 But not as computationally efficient 

 Often addressed by using public key crypto to exchange 

a session key then used for symmetric crypto  

 Not guaranteed secure  

 but major result if not 
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Our Crypto Toolkit 

 Cryptographically strong hash functions  

 Building block for integrity (e.g., SHA-1, SHA-2) 

 As well as providing concise digests 

 And providing a way to prove you know 

something (e.g., passwords) without revealing it 

(non-invertibility) 

 But: worrisome recent results regarding their 

strength 

 Public key also gives us signatures 

 Including sender non-repudiation 
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What is Missing? 

 How can you relate a key to a person? 

 Trust (PKIs) 

 

 How do all these pieces fit together? 

 SSL 

 

 What about availability? 
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Public Key Infrastructure (PKI) 

 Public key crypto is very powerful 

 But tying public keys to real world 

identities is quite hard 

 PKI: Trust distribution mechanism 

 Authentication via Digital Certificates 

 Trust doesn’t mean someone is honest, 

just that they are who they say they are… 
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Managing Trust 

 The most solid level of trust is rooted in our 

direct personal experience 

 E.g., Alice’s trust that Bob is Bob 

 Clearly doesn’t scale to a global network! 

 

 In its absence, we rely on delegation 

 Alice trusts Bob’s identity because Charlie 

attests to it …. 

 …. and Alice trusts Charlie 
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Managing Trust, con’t 

 Trust is not completely transitive 

 Should Alice trust Bob because she trusts Charlie … 

 … and Charlie vouches for Donna … 

 … and Donna says Eve is trustworthy … 

 … and Eve vouches for Bob’s identity? 

 

 Two models of delegating trust 

 Rely on your set of friends and their friends 

 “Web of trust”, e.g., PGP 

 Rely on trusted, well-known authorities (and their minions) 

 “Trusted root”,  e.g., HTTPS 
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PKI Conceptual Framework 

 Trusted-Root PKI 

 Basis: well-known public key serves as root of a hierarchy 

 Managed by a Certificate Authority (CA) 

 Publishing a public key 

 CA digitally signs statement indicating that they agree 

(“certify”) that it is indeed your key 

 This bunch of bits is a certificate for your key 

 Includes both your public key and the signed statement 

 Anyone that knows CA’s public key can verify the 

signature 
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PKI Conceptual Framework 

 Delegation of trust to the CA 

 They’d better not screw up (duped into signing bogus key) 

 They’d better have procedures for dealing with stolen keys 

 Note: can build up a hierarchy of signing 
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Components of a PKI 
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Digital Certificate 

 Binds an entity with its corresponding 

public key 

 Signed by a recognized and trusted 

authority, i.e., Certification Authority (CA) 

 Provide assurance that a particular public 

key belongs to a specific entity 
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Digital Certificate 

 Example: certificate of entity Y 

Cert = E({nameY, KYpublic}, KCAprivate) 

 KCAprivate: private key of Certificate Authority 

 nameY: name of entity Y 

 KYpublic: public key of entity Y 

 In fact, they may sign whatever bits you give them 

 Your browser has a bunch of CAs 
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Certification Authority 

 People, processes responsible for creation, delivery and 

management of digital certificates 

 Organized in an hierarchy 

 To verify signature chain, follow hierarchy up to root 

 Need to trust the CA’s internal security 

 Not always a good idea … http://goo.gl/84l3i 

CA-1 CA-2 

Root CA 
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Registration Authority 

 People & processes responsible for 

 Authenticating the identity of new entities (users 

or computing devices),  

 e.g. by phone, or physical presence + ID 

 Issuing requests to CA for certificates 

 

 The CA must trust the Registration Authority 
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Certificate Repository 

 A database accessible to all users of a PKI 

 Contains 

 Digital certificates 

 Policy information associated with certs 

 Certificate revocation information  

 Vital to be able to identify certs that have 

been compromised 

 Usually done via a revocation list 
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Passwords 

 Only user knows password 

 Someone typing correct password must be user! 

 System must keep copy to  

check against passwords 

 What if malicious user gains access to list of 

passwords? 

 Need to obscure information somehow 

 Mechanism 

 Utilize a transformation that is difficult to reverse 

without the right key (e.g. encryption) 
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Passwords 

 Example: UNIX /etc/passwd file 

 Passwd  one way transform(hash)  

encrypted passwd 

 System stores only encrypted version, so 

OK even if someone reads the file! 

 When you type in your password, system 

compares encrypted version 
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Compromising Passwords 

 Password Guessing 

 Often obvious passwords like birthday, favorite 

color, girlfriend’s name, etc… 

 Dictionary Attack 

 Work way through dictionary and compare 

encrypted version of dictionary words with 
entries in /etc/passwd 

 Dumpster Diving: 

 Find pieces of paper with passwords written on 

them 
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Good Passwords? 

 Paradox 

 Short passwords are easy to crack 

 Long ones, people write down! 

 Better technology  longer passwords 

 UNIX initially required lowercase, 5-letter 

passwords: total of 265=10million passwords 

 In 1975, 10ms to check a password1 day to crack 

 In 2005, .01μs to check a password0.1 seconds to 

crack 

 Takes less time to check for all words in the 

dictionary! 
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Stopping the hacker 

 Extend everyone’s password with a unique number 

 Early UNIX uses 12-bit “salt” dictionary attacks 4096x 

harder 

 Require more complex passwords 
 Make people use at least 8-character passwords with upper-

case, lower-case, and numbers 

 Delay checking of passwords 

 Delay every remote login attempt by 1 second 

 Assign very long passwords/passphrases 

 Smart cards 

 Biometrics! 
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Putting It All Together: HTTPS 

 Steps after clicking on https://www.amazon.com 

 https = “Use HTTP over SSL/TLS” 

 SSL = Secure Socket Layer 

 TLS = Transport Layer Security 

 Successor to SSL, and compatible with it 

 RFC 4346  

 

 Provides security layer (authentication, encryption) 

on top of TCP 

 Fairly transparent to the app 
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HTTPS Connection (SSL/TLS) 
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 Browser (client) 
connects via TCP to 
Amazon’s HTTPS server 

 Client sends over list of 
crypto protocols it 
supports 

 Server picks protocols 
to use for this session 

 Server sends over its 
certificate 

 (all of this is in the clear) 

Browser Amazon 
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Inside the Server’s Certificate 

 Name associated with cert (e.g., Bank of America) 

CS 241 © CS 241 Staff - University of Illinois 49 



Inside the Server’s Certificate 

 Name associated with cert (e.g., Bank of America) 

 BoA’s public key 

 A bunch of auxiliary info (physical address, type of 

cert, expiration time) 

 URL to revocation center to check for revoked keys 

 Name of certificate’s signatory (who signed it) 

 A public-key signature of a hash (MD5) of all this 

 Constructed using the signatory’s private RSA key 
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Validating Amazon’s Identity 

 Browser retrieves cert belonging to the signatory 

 These are hardwired into the browser 

 If it can’t find the cert, then warns the user that site has not 

been verified 

 And may ask whether to continue 

 Note, can still proceed, just without authentication 

 Browser uses public key in signatory’s cert to decrypt 

signature 

 Compares with its own MD5 hash of Amazon’s cert 

 Assuming signature matches, now have high confidence it’s 

indeed Amazon … 

 … assuming signatory is trustworthy! 
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HTTPS Connection (SSL/TLS) 

 Browser constructs a random 
session key K 

 Browser encrypts K using 
Amazon’s public key 

 Browser sends E(K, KApublic) to 
server 

 Browser displays 

 All subsequent communication 
encrypted w/ symmetric cipher 
using key K 

 e.g., client can authenticate 
using a password 

Browser Amazon 

K 

K 
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Solutions for basic 

security requirements 

 Confidentiality: Encryption 

 Integrity: Cryptographic Hash 

 Authentication: Decrypting nonce 

 Provenance: Digital signature 

 Human-level provenance: PKI 

 

 Availability: ? 
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Solutions for basic 

security requirements 

 Confidentiality: Encryption 

 Integrity: Cryptographic Hash 

 Authentication: Decrypting nonce 

 Provenance: Digital signature 

 Human-level provenance: PKI 

 

 Availability: ? 

Crypto lets us convert “messy 

failures” into “clean failures” [Dave 

Clark] 

 

e.g., authentication failure becomes 

connection drop 

 

OK, so what about availability? 
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Protecting Availability 
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Threats 

56 

[Arbor Networks Security Report 2010] 
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Threats to Availability 

 Infrastructure compromise (e.g. BGP, DNS): 

 Attack removes service from operation 

 Design protocols to have limited Byzantine vulnerability 

 Prevent outsiders from posing as infrastructure (crypto) 

 

 Denial-of-Service Attacks 

 Attack consumes service resources so legitimate users 

can’t get any 

 What are they? 

 How can we defend against them? 
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Infrastructure compromise 

Example: DNS 

 What security issues does the design & operation of 

the DNS raise? 

 Cache poisoning! 
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Additional information 

(variable # of resource records) 

Questions 

(variable # of resource records) 

Answers 

(variable # of resource records) 
Authority 

(variable # of resource 

records) 

# Authority RRs # Additional RRs 

Identification Flags 

# Questions # Answer RRs 

16 bits 16 bits 



DNS attack summary 

 DNS currently lacks authentication 

 Can’t tell if reply comes from the correct source 

 Can’t tell if correct source tells the truth 

 Malicious source can insert extra (mis)information 

 Malicious bystander can spoof (mis)information 

 Playing with caching lifetimes adds extra power to attacks 

 

 More importantly, example of how security was 

largely ignored in the original design of the Internet 
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Denial of Service (DoS) 

 Attacker prevents legitimate users from 

using something (network, server) 

 Increased workload 

 The overloaded component responds slowly or 

not at all to legitimate requests. 

 Consider the following... 
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Denial of Service 

This slide is intended to demonstrate the concept of denial of 
service by placing useful information in the middle of a 
paragraph of drivel.  If you’ve gotten this far, you may want to 
jump to the middle or scan around, but you’re unlikely to find 
the important part before I skip to the next slide, simulating the 
fact that the garbage doesn’t stop coming in a denial of 
service attack.  In fact, in some cases you may get nothing but 
garbage.  If you recall how IP datagram services work, for 
example, then you can reason about the likelihood of 
legitimate requests spaced by increasingly long TCP timeouts 
finding an empty queue slot in a router fed from another input 
by a continuous stream of bogus packets.  When a slot opens 
up, it is quickly grabbed by the next bogus packets and rarely 
available for the real thing. 
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Denial of Service 

 So did you get the point? 
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read 

 During a denial of service attack, 

do servers continue to receive 

client requests? 

 



Denial of Service 

This slide is intended to demonstrate the concept of denial of 
service by placing useful information in the middle of a 
paragraph of drivel.  If you’ve gotten this far, you may want to 
jump to the middle or scan around, but you’re unlikely to find 
the important part before I skip to the next slide, simulating the 
fact that the garbage doesn’t stop coming in a denial of 
service attack.  In fact, in some cases you may get nothing but 
garbage.  If you recall how IP datagram services work, for 
example, then you can reason about the likelihood of 
legitimate requests spaced by increasingly long TCP timeouts 
finding an empty queue slot in a router fed from another input 
by a continuous stream of bogus packets.  When a slot opens 
up, it is quickly grabbed by the next bogus packets and rarely 
available for the real thing. 
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In fact, in some cases you may get nothing but  
garbage. 



Denial of Service (DoS) 

 Attacker prevents legitimate users from 

using something (network, server) 

 Motives? 

 Retaliation 

 Extortion (e.g., betting sites just before big 

matches) 

 Commercial advantage (disable your competitor) 

 Cripple defenses (e.g., firewall) to enable 

broader attack 
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Denial of Service (DoS) 

 Often done via some form of flooding 

 Can be done at different semantic levels 

 Network 

 Clog a link or router with a huge rate of packets 

 Transport 

 Overwhelm victim’s ability to handle connections 

 Application 

 Overwhelm victim’s ability to handle requests 
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How Does It Traditionally 

Work? 

 Example: IP spoofing 

 Remember the TCP SYN segment? 
 Client sends SYN to server 

 Server reserves queue entry 

 Server sends back SYN 

 Server sends back SYN to where? 
 Client IP must be included in first SYN 

 What if the client lies? 
“Hi, please contact Robin’s computer.” 
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IP Spoofing 

 Pretending to be Robin’s computer 
 It responds 

 Queue resources freed up 

 Not terribly effective 

 Instead, pick a computer that probably won’t 
respond 
 A random number works nicely 

 Return SYN gets lost 

 Server waits 75 seconds before freeing queue 
entry 

 What are the key elements? 
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Key Elements of Denial of 

Service Attacks 

 Expansion in required work 
 Easy for me, hard for you 

 In spoofing, 
 Creating and sending a SYN: a few microseconds 

 Timing out a queue entry: 75 seconds 

 Protocols that admit starvation 
 IP routers 

 Drop datagrams when output buffer full 

 Independent of source input 

 Result is that clients can be starved 

 Painfully slow even without starvation 
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What’s New about the Recent 

Attacks? 

 Expansion factor allows attack by a few or 
one 

 Alternative 
 Attack by many 

 Requires many resources distributed across 
Internet 

 Benefits from expansion, too 

 Attack software 
 Probably installed indirectly 

 Apparently resident for some time 

 No significant trail remains 
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What Changed to Make These 

Attacks Possible? 

 Change of Internet character 
 Many more machines 

 Many more naive users 

 Much more complex software 

 Old Internet 
 Very little interpretation of data (e.g., e-mail) 

 Operating system bugs relative secure (by 
obscurity) 

 Security-savvy administrator required 
(so security breaches detected and repaired) 
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Denial of Service Attacks in 

the New Internet 

 New Internet 
 Point-and-click network installation 

 Very broad interfaces 

 Even transparent code encapsulation 

 And self-installing “plug-ins”! 

 Public source operating systems, too 

 (and frustrated security gurus writing tools to eliminate any 
remaining obscurity) 

 Example of attack: 
 Abuse bug in Internet Explorer to install flashing window 

telling owner to download patch 

 What else might someone install instead? 
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IP Spoofing Countermeasures 

 IP spoofing 
 Abuses TCP connection queue time expansion 

 Considered unsolvable for quite some time 

 Solved by ingenious use of cryptography 

 Solution 
 Return one-use key with response SYN 

segment 

 Reserve no queue resources 

 ACK to second SYN (third step of setup) must 
return the key 

 IP spoofing never sends such an ACK 



Denial of Service (DoS) 
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Denial of Service (DoS) 
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DoS: Network Flooding 

 Goal is to clog network link(s) leading to 

victim 

 Either fill the link, or overwhelm their routers 

 Users can’t access victim server due to 

congestion 

 Attacker sends traffic to victim as fast as 

possible 

 It will often use (many) spoofed source 

addresses 
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DoS: Network Flooding 

 Using multiple hosts (slaves, or zombies) 

yields a Distributed Denial-of-Service attack, 

aka DDoS 

 Traffic can be varied (sources, destinations, 

ports, length) so no simple filter matches it 

 If attacker has enough slaves, often doesn’t 

need to spoof - victim can’t shut them down 

anyway! :-( 
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Distributed Denial-of-Service 

(DDoS) 
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Master 

Slave 1 

Slave 3 

Slave 4 

Slave 2 

Victim 

Control traffic directs 

slaves at victim 

src = random 

dst = victim 

Slaves send streams of traffic 

(perhaps spoofed) to victim 



Very Nasty DoS Attack: 

Reflectors 

 Reflection 

 Cause one non-compromised host to help flood another 

 e.g., host A sends DNS request or TCP SYN with source 

V to server R.  
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Reflector (R) Internet 

Attacker (A) 

R V 

Victim (V) 



 Reflection 

 Cause one non-compromised host to help flood another 

 e.g., host A sends DNS request or TCP SYN with source 

V to server R.  

 

Reflector (R) 

Internet 

Attacker (A) 

V R 

Victim (V) 

Very Nasty DoS Attack: 

Reflectors 
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Diffuse DDoS: Reflector Attack 
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Master 

Slave 1 

Slave 3 

Slave 4 

Slave 2 

Victim 

Control traffic 

directs slaves at 

victim & reflectors 

Request: src = victim 

        dst = reflector 

Reflectors send streams of 

non-spoofed but  

unsolicited traffic to victim 

Reflector 1 

Reflector 9 

Reflector 4 

Reflector 2 

Reflector 3 

Reflector 5 

Reflector 6 

Reflector 7 

Reflector 11 
Reflector 8 

Reflector 10 

Reply: src = reflector 

        dst = victim 



Defending Against Network 

Flooding 

 How do we defend against such floods? 

 Answer: we don’t!  (not completely.)   

 Big problem today! 

 Techniques exist to trace spoofed traffic 

back to origins 

 Not useful in face of a large attack 

 Techniques exist to filter traffic 

 A well-designed flooding stream defies stateless 

filtering 
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Defending Against Network 

Flooding 

 Best solutions to date 

 Overprovision - have enough raw capacity that 

it’s hard to flood your links 

 Largest confirmed botnet  to date: 1.5 million hosts 

 Floods seen to date: as high as 100 Gbps 

 Distribute your services - force attacker to flood 

many points 

 e.g., the root name servers 
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Proposed Solutions 

 Network-level attacks 

 Capabilities: don’t let flows send without 

permission 

 Shut-up message 

 

 Application-level attacks 

 Proof-of-work 

 Ask clients to send more 
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Hooray! 

We solved security! 
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…or not…It is a Big Bad 

World Out There… 
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