

Security

CS 241 © CS 241 Staff - University of Illinois 1

Security is a problem

 Networked systems are

 Shared by many with differing goals and

interests

 No security = potential compromise!

 Exposure of your information

 Encryption is not enough!

 Still need data integrity, originality, and

timeliness!

CS 241 © CS 241 Staff - University of Illinois 2

Basic Requirements for

Secure Communication

 Availability

 Will the network deliver data?

 Infrastructure compromise, DDoS

 Authentication

 Who is this person/machine?

 Spoofing, phishing

 Integrity

 Do messages arrive in original form?
CS 241 © CS 241 Staff - University of Illinois 3

Basic Requirements for

Secure Communication

 Confidentiality

 Can adversary read the data?

 Sniffing, man-in-the-middle

 Provenance

 Who is responsible for this data?

 Forging responses, denying responsibility

 Not who sent the data, but who created it

CS 241 © CS 241 Staff - University of Illinois 4

Other Desirable Security

Properties

 Authorization

 Is user/machine allowed to do this action?

 Access controls

 Accountability/Attribution

 Who did this activity?

 Audit/forensics

 What occurred in the past?

 A broader notion of accountability/attribution

CS 241 © CS 241 Staff - University of Illinois 5

Other Desirable Security

Properties

 Appropriate use

 Is action consistent with policy?

 e.g., no spam; no games during business hours;

etc.

 Freedom from traffic analysis

 Can someone tell when I am sending and to

whom?

 Anonymity

 can someone tell I sent this packet?

CS 241 © CS 241 Staff - University of Illinois 6

Basic Forms of Cryptography

CS 241 © CS 241 Staff - University of Illinois 7

Confidentiality through

Cryptography

 Cryptography

 Communication over insecure channel in the

presence of adversaries

 Studied for thousands of years

 See Singh’s The Code Book for an excellent

history

 Central goal

 How to encode information so that an adversary

can’t extract it …but a friend can

CS 241 © CS 241 Staff - University of Illinois 8

Confidentiality through

Cryptography

 General premise

 A key is required for decoding

 Give it to friends, keep it away from attackers

 Two different categories of encryption

 Symmetric

 Efficient, requires key distribution

 Asymmetric (Public Key)

 Computationally expensive, but no key distribution

problem

CS 241 © CS 241 Staff - University of Illinois 9

Symmetric Key Encryption

 Same key for encryption and decryption

 Both sender and receiver know key

 But adversary does not know key

 For communication, problem is key distribution

 How do the parties (secretly) agree on the key?

 What can you do with a huge key?

 One-time pad

 Huge key of random bits

 To encrypt/decrypt: just XOR with the key!

 Provably secure! …. provided:

 You never reuse the key…and it really is random/unpredictable

 Spies actually use these

CS 241 © CS 241 Staff - University of Illinois 10

Using Symmetric Keys

 Both the sender and the receiver use the

same secret keys

CS 241 © CS 241 Staff - University of Illinois

Internet
Encrypt with

secret key

Decrypt with

secret key

Plaintext Plaintext

Ciphertext

11

Asymmetric Encryption (Public

Key)

 Idea

 Use two different keys, one to encrypt (e)

and one to decrypt (d)

 A key pair

 Crucial property

 knowing e does not give away d

 Therefore e can be public

 Everyone knows e!

CS 241 © CS 241 Staff - University of Illinois 12

Asymmetric Encryption (Public

Key)

 Alice wants to send to Bob

 Fetch Bob’s public key (say from Bob’s

home page)

 Encrypt message with Bob’s public key

 Alice can’t decrypt what she’s sending

to Bob …

 … but then, neither can anyone else

(except Bob)

CS 241 © CS 241 Staff - University of Illinois 13

Public Key / Asymmetric

Encryption

 Sender uses receiver’s public key

 Advertised to everyone

 Receiver uses complementary private key

 Must be kept secret

CS 241 © CS 241 Staff - University of Illinois

Internet
Encrypt with

public key

Decrypt with

private key

Plaintext Plaintext

Ciphertext

14

Works in Reverse Direction

Too!

 Sender uses his own private key

 Receiver uses complementary public key

 Allows sender to prove he knows private key

CS 241 © CS 241 Staff - University of Illinois

Internet
Decrypt with

public key

Encrypt with

private key

Plaintext Plaintext

Ciphertext

15

Realizing Public Key

Cryptography

 Invented in the 1970s (probably even as early as

the 1960s)

 Revolutionized cryptography

 How can we construct an encryption/decryption

algorithm with public/private properties?

 Answer: Number Theory

 Most fully developed approach: RSA

 Rivest / Shamir / Adleman, 1977; RFC 3447

 Based on modular multiplication of very large integers

 Very widely used (e.g., SSL/TLS for https)

CS 241 © CS 241 Staff - University of Illinois 16

Cryptographic Toolkit

CS 241 © CS 241 Staff - University of Illinois 17

Cryptographic Toolkit

 Confidentiality: Encryption

 Integrity: ?

 Authentication: ?

 Provenance: ?

CS 241 © CS 241 Staff - University of Illinois 18

Integrity: Cryptographic

Hashes

 Sender computes a digest of message m,

 i.e., H(m)

 H() is a publicly known hash function

 Send m in any manner

 Send digest d = H(m) to receiver in a secure way

 Using another physical channel

 Using encryption (why does this help?)

 Receive m and d

 Receiver re-computes H(m) to see whether result agrees

with d

CS 241 © CS 241 Staff - University of Illinois 19

Operation of Hashing for

Integrity

CS 241 © CS 241 Staff - University of Illinois

Internet
Digest

(MD5)

Plaintext

digest

Digest

(MD5)

=

digest’

NO

corrupted msg Plaintext

20

Cryptographically Strong

Hashes

 Hard to find collisions

 Adversary can’t find two inputs that produce same hash

 Hard to alter message without modifying digest

 Can succinctly refer to large objects

 Hard to invert

 Given hash, adversary can’t find input that produces it

 Can refer obliquely to private objects (e.g., passwords)

 Send hash of object rather than object itself

CS 241 © CS 241 Staff - University of Illinois 21

Effects of Cryptographic

Hashing

CS 241 © CS 241 Staff - University of Illinois 22

Cryptographic Toolkit

 Confidentiality: Encryption

 Integrity: Cryptographic Hash

 Authentication: ?

 Provenance: ?

CS 241 © CS 241 Staff - University of Illinois 23

Public Key Authentication

 Each party only knows the

other’s public key

 No secret key need be

shared

 A encrypts a nonce

(random number) x using

B’s public key

 B proves it can recover x

 A can authenticate itself to

B in the same way

CS 241 © CS 241 Staff - University of Illinois

A B

24

Cryptographic Toolkit

 Confidentiality: Encryption

 Integrity: Cryptographic Hash

 Authentication: Decrypting nonce

 Provenance: ?

CS 241 © CS 241 Staff - University of Illinois 25

Digital Signatures

 Alice publishes public key KE

 Prove she is Alice!

 Send a message x encrypted with her private

key KD

 Anyone w/ public key KE can recover x, verify

that Alice must have sent the message

 It provides a digital signature

 Alice can’t deny later deny it  non-repudiation

CS 241 © CS 241 Staff - University of Illinois 26

RSA Crypto & Signatures

CS 241 © CS 241 Staff - University of Illinois 27

Our Crypto Toolkit

 Secure key distribution

 Symmetric ciphers (e.g., AES) offer fast,

presumably strong confidentiality

 Public key cryptography

 No need of secure key distribution

 But not as computationally efficient

 Often addressed by using public key crypto to exchange

a session key then used for symmetric crypto

 Not guaranteed secure

 but major result if not

CS 241 © CS 241 Staff - University of Illinois 28

Our Crypto Toolkit

 Cryptographically strong hash functions

 Building block for integrity (e.g., SHA-1, SHA-2)

 As well as providing concise digests

 And providing a way to prove you know

something (e.g., passwords) without revealing it

(non-invertibility)

 But: worrisome recent results regarding their

strength

 Public key also gives us signatures

 Including sender non-repudiation
CS 241 © CS 241 Staff - University of Illinois 29

What is Missing?

 How can you relate a key to a person?

 Trust (PKIs)

 How do all these pieces fit together?

 SSL

 What about availability?

CS 241 © CS 241 Staff - University of Illinois 30

Public Key Infrastructure (PKI)

 Public key crypto is very powerful

 But tying public keys to real world

identities is quite hard

 PKI: Trust distribution mechanism

 Authentication via Digital Certificates

 Trust doesn’t mean someone is honest,

just that they are who they say they are…

CS 241 © CS 241 Staff - University of Illinois 31

Managing Trust

 The most solid level of trust is rooted in our

direct personal experience

 E.g., Alice’s trust that Bob is Bob

 Clearly doesn’t scale to a global network!

 In its absence, we rely on delegation

 Alice trusts Bob’s identity because Charlie

attests to it ….

 …. and Alice trusts Charlie

CS 241 © CS 241 Staff - University of Illinois 32

Managing Trust, con’t

 Trust is not completely transitive

 Should Alice trust Bob because she trusts Charlie …

 … and Charlie vouches for Donna …

 … and Donna says Eve is trustworthy …

 … and Eve vouches for Bob’s identity?

 Two models of delegating trust

 Rely on your set of friends and their friends

 “Web of trust”, e.g., PGP

 Rely on trusted, well-known authorities (and their minions)

 “Trusted root”, e.g., HTTPS

CS 241 © CS 241 Staff - University of Illinois 33

PKI Conceptual Framework

 Trusted-Root PKI

 Basis: well-known public key serves as root of a hierarchy

 Managed by a Certificate Authority (CA)

 Publishing a public key

 CA digitally signs statement indicating that they agree

(“certify”) that it is indeed your key

 This bunch of bits is a certificate for your key

 Includes both your public key and the signed statement

 Anyone that knows CA’s public key can verify the

signature

CS 241 © CS 241 Staff - University of Illinois 34

PKI Conceptual Framework

 Delegation of trust to the CA

 They’d better not screw up (duped into signing bogus key)

 They’d better have procedures for dealing with stolen keys

 Note: can build up a hierarchy of signing

CS 241 © CS 241 Staff - University of Illinois 35

Components of a PKI

CS 241 © CS 241 Staff - University of Illinois

36

Digital Certificate

 Binds an entity with its corresponding

public key

 Signed by a recognized and trusted

authority, i.e., Certification Authority (CA)

 Provide assurance that a particular public

key belongs to a specific entity

CS 241 © CS 241 Staff - University of Illinois 37

Digital Certificate

 Example: certificate of entity Y

Cert = E({nameY, KYpublic}, KCAprivate)

 KCAprivate: private key of Certificate Authority

 nameY: name of entity Y

 KYpublic: public key of entity Y

 In fact, they may sign whatever bits you give them

 Your browser has a bunch of CAs

CS 241 © CS 241 Staff - University of Illinois 38

Certification Authority

 People, processes responsible for creation, delivery and

management of digital certificates

 Organized in an hierarchy

 To verify signature chain, follow hierarchy up to root

 Need to trust the CA’s internal security

 Not always a good idea … http://goo.gl/84l3i

CA-1 CA-2

Root CA

CS 241 © CS 241 Staff - University of Illinois 39

Registration Authority

 People & processes responsible for

 Authenticating the identity of new entities (users

or computing devices),

 e.g. by phone, or physical presence + ID

 Issuing requests to CA for certificates

 The CA must trust the Registration Authority

CS 241 © CS 241 Staff - University of Illinois 40

Certificate Repository

 A database accessible to all users of a PKI

 Contains

 Digital certificates

 Policy information associated with certs

 Certificate revocation information

 Vital to be able to identify certs that have

been compromised

 Usually done via a revocation list

CS 241 © CS 241 Staff - University of Illinois 41

Passwords

 Only user knows password

 Someone typing correct password must be user!

 System must keep copy to

check against passwords

 What if malicious user gains access to list of

passwords?

 Need to obscure information somehow

 Mechanism

 Utilize a transformation that is difficult to reverse

without the right key (e.g. encryption)

CS 241 © CS 241 Staff - University of Illinois 42

Passwords

 Example: UNIX /etc/passwd file

 Passwd  one way transform(hash) 

encrypted passwd

 System stores only encrypted version, so

OK even if someone reads the file!

 When you type in your password, system

compares encrypted version

CS 241 © CS 241 Staff - University of Illinois 43

Compromising Passwords

 Password Guessing

 Often obvious passwords like birthday, favorite

color, girlfriend’s name, etc…

 Dictionary Attack

 Work way through dictionary and compare

encrypted version of dictionary words with
entries in /etc/passwd

 Dumpster Diving:

 Find pieces of paper with passwords written on

them
CS 241 © CS 241 Staff - University of Illinois 44

Good Passwords?

 Paradox

 Short passwords are easy to crack

 Long ones, people write down!

 Better technology  longer passwords

 UNIX initially required lowercase, 5-letter

passwords: total of 265=10million passwords

 In 1975, 10ms to check a password1 day to crack

 In 2005, .01μs to check a password0.1 seconds to

crack

 Takes less time to check for all words in the

dictionary!

CS 241 © CS 241 Staff - University of Illinois 45

Stopping the hacker

 Extend everyone’s password with a unique number

 Early UNIX uses 12-bit “salt” dictionary attacks 4096x

harder

 Require more complex passwords
 Make people use at least 8-character passwords with upper-

case, lower-case, and numbers

 Delay checking of passwords

 Delay every remote login attempt by 1 second

 Assign very long passwords/passphrases

 Smart cards

 Biometrics!
CS 241 © CS 241 Staff - University of Illinois 46

Putting It All Together: HTTPS

 Steps after clicking on https://www.amazon.com

 https = “Use HTTP over SSL/TLS”

 SSL = Secure Socket Layer

 TLS = Transport Layer Security

 Successor to SSL, and compatible with it

 RFC 4346

 Provides security layer (authentication, encryption)

on top of TCP

 Fairly transparent to the app

CS 241 © CS 241 Staff - University of Illinois 47

HTTPS Connection (SSL/TLS)

CS 241 © CS 241 Staff - University of Illinois

 Browser (client)
connects via TCP to
Amazon’s HTTPS server

 Client sends over list of
crypto protocols it
supports

 Server picks protocols
to use for this session

 Server sends over its
certificate

 (all of this is in the clear)

Browser Amazon

48

Inside the Server’s Certificate

 Name associated with cert (e.g., Bank of America)

CS 241 © CS 241 Staff - University of Illinois 49

Inside the Server’s Certificate

 Name associated with cert (e.g., Bank of America)

 BoA’s public key

 A bunch of auxiliary info (physical address, type of

cert, expiration time)

 URL to revocation center to check for revoked keys

 Name of certificate’s signatory (who signed it)

 A public-key signature of a hash (MD5) of all this

 Constructed using the signatory’s private RSA key

CS 241 © CS 241 Staff - University of Illinois 50

Validating Amazon’s Identity

 Browser retrieves cert belonging to the signatory

 These are hardwired into the browser

 If it can’t find the cert, then warns the user that site has not

been verified

 And may ask whether to continue

 Note, can still proceed, just without authentication

 Browser uses public key in signatory’s cert to decrypt

signature

 Compares with its own MD5 hash of Amazon’s cert

 Assuming signature matches, now have high confidence it’s

indeed Amazon …

 … assuming signatory is trustworthy!

CS 241 © CS 241 Staff - University of Illinois 51

HTTPS Connection (SSL/TLS)

 Browser constructs a random
session key K

 Browser encrypts K using
Amazon’s public key

 Browser sends E(K, KApublic) to
server

 Browser displays

 All subsequent communication
encrypted w/ symmetric cipher
using key K

 e.g., client can authenticate
using a password

Browser Amazon

K

K

CS 241 © CS 241 Staff - University of Illinois 52

Solutions for basic

security requirements

 Confidentiality: Encryption

 Integrity: Cryptographic Hash

 Authentication: Decrypting nonce

 Provenance: Digital signature

 Human-level provenance: PKI

 Availability: ?

CS 241 53 © CS 241 Staff - University of Illinois

Solutions for basic

security requirements

 Confidentiality: Encryption

 Integrity: Cryptographic Hash

 Authentication: Decrypting nonce

 Provenance: Digital signature

 Human-level provenance: PKI

 Availability: ?

Crypto lets us convert “messy

failures” into “clean failures” [Dave

Clark]

e.g., authentication failure becomes

connection drop

OK, so what about availability?

CS 241 54 © CS 241 Staff - University of Illinois

Protecting Availability

CS 241 55 © CS 241 Staff - University of Illinois

Threats

56

[Arbor Networks Security Report 2010]

CS 241 © CS 241 Staff - University of Illinois

Threats to Availability

 Infrastructure compromise (e.g. BGP, DNS):

 Attack removes service from operation

 Design protocols to have limited Byzantine vulnerability

 Prevent outsiders from posing as infrastructure (crypto)

 Denial-of-Service Attacks

 Attack consumes service resources so legitimate users

can’t get any

 What are they?

 How can we defend against them?

CS 241 57 © CS 241 Staff - University of Illinois

Infrastructure compromise

Example: DNS

 What security issues does the design & operation of

the DNS raise?

 Cache poisoning!

CS 241 © CS 241 Staff - University of Illinois 60

Additional information

(variable # of resource records)

Questions

(variable # of resource records)

Answers

(variable # of resource records)
Authority

(variable # of resource

records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

DNS attack summary

 DNS currently lacks authentication

 Can’t tell if reply comes from the correct source

 Can’t tell if correct source tells the truth

 Malicious source can insert extra (mis)information

 Malicious bystander can spoof (mis)information

 Playing with caching lifetimes adds extra power to attacks

 More importantly, example of how security was

largely ignored in the original design of the Internet

CS 241 © CS 241 Staff - University of Illinois 61

Denial of Service (DoS)

 Attacker prevents legitimate users from

using something (network, server)

 Increased workload

 The overloaded component responds slowly or

not at all to legitimate requests.

 Consider the following...

CS 241 © CS 241 Staff - University of Illinois 62

Denial of Service

This slide is intended to demonstrate the concept of denial of
service by placing useful information in the middle of a
paragraph of drivel. If you’ve gotten this far, you may want to
jump to the middle or scan around, but you’re unlikely to find
the important part before I skip to the next slide, simulating the
fact that the garbage doesn’t stop coming in a denial of
service attack. In fact, in some cases you may get nothing but
garbage. If you recall how IP datagram services work, for
example, then you can reason about the likelihood of
legitimate requests spaced by increasingly long TCP timeouts
finding an empty queue slot in a router fed from another input
by a continuous stream of bogus packets. When a slot opens
up, it is quickly grabbed by the next bogus packets and rarely
available for the real thing.

CS 241 © CS 241 Staff - University of Illinois 63

Denial of Service

 So did you get the point?

CS 241 © CS 241 Staff - University of Illinois 64

read

 During a denial of service attack,

do servers continue to receive

client requests?

Denial of Service

This slide is intended to demonstrate the concept of denial of
service by placing useful information in the middle of a
paragraph of drivel. If you’ve gotten this far, you may want to
jump to the middle or scan around, but you’re unlikely to find
the important part before I skip to the next slide, simulating the
fact that the garbage doesn’t stop coming in a denial of
service attack. In fact, in some cases you may get nothing but
garbage. If you recall how IP datagram services work, for
example, then you can reason about the likelihood of
legitimate requests spaced by increasingly long TCP timeouts
finding an empty queue slot in a router fed from another input
by a continuous stream of bogus packets. When a slot opens
up, it is quickly grabbed by the next bogus packets and rarely
available for the real thing.

 CS 241 © CS 241 Staff - University of Illinois 65

In fact, in some cases you may get nothing but
garbage.

Denial of Service (DoS)

 Attacker prevents legitimate users from

using something (network, server)

 Motives?

 Retaliation

 Extortion (e.g., betting sites just before big

matches)

 Commercial advantage (disable your competitor)

 Cripple defenses (e.g., firewall) to enable

broader attack

CS 241 © CS 241 Staff - University of Illinois 66

Denial of Service (DoS)

 Often done via some form of flooding

 Can be done at different semantic levels

 Network

 Clog a link or router with a huge rate of packets

 Transport

 Overwhelm victim’s ability to handle connections

 Application

 Overwhelm victim’s ability to handle requests

CS 241 © CS 241 Staff - University of Illinois 67

CS 241 © CS 241 Staff - University of Illinois 68

How Does It Traditionally

Work?

 Example: IP spoofing

 Remember the TCP SYN segment?
 Client sends SYN to server

 Server reserves queue entry

 Server sends back SYN

 Server sends back SYN to where?
 Client IP must be included in first SYN

 What if the client lies?
“Hi, please contact Robin’s computer.”

CS 241 © CS 241 Staff - University of Illinois 69

IP Spoofing

 Pretending to be Robin’s computer
 It responds

 Queue resources freed up

 Not terribly effective

 Instead, pick a computer that probably won’t
respond
 A random number works nicely

 Return SYN gets lost

 Server waits 75 seconds before freeing queue
entry

 What are the key elements?

CS 241 © CS 241 Staff - University of Illinois 70

Key Elements of Denial of

Service Attacks

 Expansion in required work
 Easy for me, hard for you

 In spoofing,
 Creating and sending a SYN: a few microseconds

 Timing out a queue entry: 75 seconds

 Protocols that admit starvation
 IP routers

 Drop datagrams when output buffer full

 Independent of source input

 Result is that clients can be starved

 Painfully slow even without starvation

CS 241 © CS 241 Staff - University of Illinois 71

What’s New about the Recent

Attacks?

 Expansion factor allows attack by a few or
one

 Alternative
 Attack by many

 Requires many resources distributed across
Internet

 Benefits from expansion, too

 Attack software
 Probably installed indirectly

 Apparently resident for some time

 No significant trail remains

CS 241 © CS 241 Staff - University of Illinois 72

What Changed to Make These

Attacks Possible?

 Change of Internet character
 Many more machines

 Many more naive users

 Much more complex software

 Old Internet
 Very little interpretation of data (e.g., e-mail)

 Operating system bugs relative secure (by
obscurity)

 Security-savvy administrator required
(so security breaches detected and repaired)

CS 241 © CS 241 Staff - University of Illinois 73

Denial of Service Attacks in

the New Internet

 New Internet
 Point-and-click network installation

 Very broad interfaces

 Even transparent code encapsulation

 And self-installing “plug-ins”!

 Public source operating systems, too

 (and frustrated security gurus writing tools to eliminate any
remaining obscurity)

 Example of attack:
 Abuse bug in Internet Explorer to install flashing window

telling owner to download patch

 What else might someone install instead?

CS 241 © CS 241 Staff - University of Illinois 74

IP Spoofing Countermeasures

 IP spoofing
 Abuses TCP connection queue time expansion

 Considered unsolvable for quite some time

 Solved by ingenious use of cryptography

 Solution
 Return one-use key with response SYN

segment

 Reserve no queue resources

 ACK to second SYN (third step of setup) must
return the key

 IP spoofing never sends such an ACK

Denial of Service (DoS)

CS 241 75 © CS 241 Staff - University of Illinois

Denial of Service (DoS)

CS 241 76 © CS 241 Staff - University of Illinois

DoS: Network Flooding

 Goal is to clog network link(s) leading to

victim

 Either fill the link, or overwhelm their routers

 Users can’t access victim server due to

congestion

 Attacker sends traffic to victim as fast as

possible

 It will often use (many) spoofed source

addresses

CS 241 © CS 241 Staff - University of Illinois 77

DoS: Network Flooding

 Using multiple hosts (slaves, or zombies)

yields a Distributed Denial-of-Service attack,

aka DDoS

 Traffic can be varied (sources, destinations,

ports, length) so no simple filter matches it

 If attacker has enough slaves, often doesn’t

need to spoof - victim can’t shut them down

anyway! :-(

CS 241 © CS 241 Staff - University of Illinois 78

Distributed Denial-of-Service

(DDoS)

CS 241 © CS 241 Staff - University of Illinois 79

Master

Slave 1

Slave 3

Slave 4

Slave 2

Victim

Control traffic directs

slaves at victim

src = random

dst = victim

Slaves send streams of traffic

(perhaps spoofed) to victim

Very Nasty DoS Attack:

Reflectors

 Reflection

 Cause one non-compromised host to help flood another

 e.g., host A sends DNS request or TCP SYN with source

V to server R.

CS 241 © CS 241 Staff - University of Illinois 80

Reflector (R) Internet

Attacker (A)

R V

Victim (V)

 Reflection

 Cause one non-compromised host to help flood another

 e.g., host A sends DNS request or TCP SYN with source

V to server R.

Reflector (R)

Internet

Attacker (A)

V R

Victim (V)

Very Nasty DoS Attack:

Reflectors

CS 241 © CS 241 Staff - University of Illinois 81

Diffuse DDoS: Reflector Attack

CS 241 © CS 241 Staff - University of Illinois 82

Master

Slave 1

Slave 3

Slave 4

Slave 2

Victim

Control traffic

directs slaves at

victim & reflectors

Request: src = victim

 dst = reflector

Reflectors send streams of

non-spoofed but

unsolicited traffic to victim

Reflector 1

Reflector 9

Reflector 4

Reflector 2

Reflector 3

Reflector 5

Reflector 6

Reflector 7

Reflector 11
Reflector 8

Reflector 10

Reply: src = reflector

 dst = victim

Defending Against Network

Flooding

 How do we defend against such floods?

 Answer: we don’t! (not completely.)

 Big problem today!

 Techniques exist to trace spoofed traffic

back to origins

 Not useful in face of a large attack

 Techniques exist to filter traffic

 A well-designed flooding stream defies stateless

filtering

CS 241 © CS 241 Staff - University of Illinois 83

Defending Against Network

Flooding

 Best solutions to date

 Overprovision - have enough raw capacity that

it’s hard to flood your links

 Largest confirmed botnet to date: 1.5 million hosts

 Floods seen to date: as high as 100 Gbps

 Distribute your services - force attacker to flood

many points

 e.g., the root name servers

CS 241 © CS 241 Staff - University of Illinois 84

Proposed Solutions

 Network-level attacks

 Capabilities: don’t let flows send without

permission

 Shut-up message

 Application-level attacks

 Proof-of-work

 Ask clients to send more
CS 241 © CS 241 Staff - University of Illinois 85

Hooray!

We solved security!

CS 241 © CS 241 Staff - University of Illinois

…or not…It is a Big Bad

World Out There…

86

