

Security

CS 241 © CS 241 Staff - University of Illinois 1

Security is a problem

 Networked systems are

 Shared by many with differing goals and

interests

 No security = potential compromise!

 Exposure of your information

 Encryption is not enough!

 Still need data integrity, originality, and

timeliness!

CS 241 © CS 241 Staff - University of Illinois 2

Basic Requirements for

Secure Communication

 Availability

 Will the network deliver data?

 Infrastructure compromise, DDoS

 Authentication

 Who is this person/machine?

 Spoofing, phishing

 Integrity

 Do messages arrive in original form?
CS 241 © CS 241 Staff - University of Illinois 3

Basic Requirements for

Secure Communication

 Confidentiality

 Can adversary read the data?

 Sniffing, man-in-the-middle

 Provenance

 Who is responsible for this data?

 Forging responses, denying responsibility

 Not who sent the data, but who created it

CS 241 © CS 241 Staff - University of Illinois 4

Other Desirable Security

Properties

 Authorization

 Is user/machine allowed to do this action?

 Access controls

 Accountability/Attribution

 Who did this activity?

 Audit/forensics

 What occurred in the past?

 A broader notion of accountability/attribution

CS 241 © CS 241 Staff - University of Illinois 5

Other Desirable Security

Properties

 Appropriate use

 Is action consistent with policy?

 e.g., no spam; no games during business hours;

etc.

 Freedom from traffic analysis

 Can someone tell when I am sending and to

whom?

 Anonymity

 can someone tell I sent this packet?

CS 241 © CS 241 Staff - University of Illinois 6

Basic Forms of Cryptography

CS 241 © CS 241 Staff - University of Illinois 7

Confidentiality through

Cryptography

 Cryptography

 Communication over insecure channel in the

presence of adversaries

 Studied for thousands of years

 See Singh’s The Code Book for an excellent

history

 Central goal

 How to encode information so that an adversary

can’t extract it …but a friend can

CS 241 © CS 241 Staff - University of Illinois 8

Confidentiality through

Cryptography

 General premise

 A key is required for decoding

 Give it to friends, keep it away from attackers

 Two different categories of encryption

 Symmetric

 Efficient, requires key distribution

 Asymmetric (Public Key)

 Computationally expensive, but no key distribution

problem

CS 241 © CS 241 Staff - University of Illinois 9

Symmetric Key Encryption

 Same key for encryption and decryption

 Both sender and receiver know key

 But adversary does not know key

 For communication, problem is key distribution

 How do the parties (secretly) agree on the key?

 What can you do with a huge key?

 One-time pad

 Huge key of random bits

 To encrypt/decrypt: just XOR with the key!

 Provably secure! …. provided:

 You never reuse the key…and it really is random/unpredictable

 Spies actually use these

CS 241 © CS 241 Staff - University of Illinois 10

Using Symmetric Keys

 Both the sender and the receiver use the

same secret keys

CS 241 © CS 241 Staff - University of Illinois

Internet
Encrypt with

secret key

Decrypt with

secret key

Plaintext Plaintext

Ciphertext

11

Asymmetric Encryption (Public

Key)

 Idea

 Use two different keys, one to encrypt (e)

and one to decrypt (d)

 A key pair

 Crucial property

 knowing e does not give away d

 Therefore e can be public

 Everyone knows e!

CS 241 © CS 241 Staff - University of Illinois 12

Asymmetric Encryption (Public

Key)

 Alice wants to send to Bob

 Fetch Bob’s public key (say from Bob’s

home page)

 Encrypt message with Bob’s public key

 Alice can’t decrypt what she’s sending

to Bob …

 … but then, neither can anyone else

(except Bob)

CS 241 © CS 241 Staff - University of Illinois 13

Public Key / Asymmetric

Encryption

 Sender uses receiver’s public key

 Advertised to everyone

 Receiver uses complementary private key

 Must be kept secret

CS 241 © CS 241 Staff - University of Illinois

Internet
Encrypt with

public key

Decrypt with

private key

Plaintext Plaintext

Ciphertext

14

Works in Reverse Direction

Too!

 Sender uses his own private key

 Receiver uses complementary public key

 Allows sender to prove he knows private key

CS 241 © CS 241 Staff - University of Illinois

Internet
Decrypt with

public key

Encrypt with

private key

Plaintext Plaintext

Ciphertext

15

Realizing Public Key

Cryptography

 Invented in the 1970s (probably even as early as

the 1960s)

 Revolutionized cryptography

 How can we construct an encryption/decryption

algorithm with public/private properties?

 Answer: Number Theory

 Most fully developed approach: RSA

 Rivest / Shamir / Adleman, 1977; RFC 3447

 Based on modular multiplication of very large integers

 Very widely used (e.g., SSL/TLS for https)

CS 241 © CS 241 Staff - University of Illinois 16

Cryptographic Toolkit

CS 241 © CS 241 Staff - University of Illinois 17

Cryptographic Toolkit

 Confidentiality: Encryption

 Integrity: ?

 Authentication: ?

 Provenance: ?

CS 241 © CS 241 Staff - University of Illinois 18

Integrity: Cryptographic

Hashes

 Sender computes a digest of message m,

 i.e., H(m)

 H() is a publicly known hash function

 Send m in any manner

 Send digest d = H(m) to receiver in a secure way

 Using another physical channel

 Using encryption (why does this help?)

 Receive m and d

 Receiver re-computes H(m) to see whether result agrees

with d

CS 241 © CS 241 Staff - University of Illinois 19

Operation of Hashing for

Integrity

CS 241 © CS 241 Staff - University of Illinois

Internet
Digest

(MD5)

Plaintext

digest

Digest

(MD5)

=

digest’

NO

corrupted msg Plaintext

20

Cryptographically Strong

Hashes

 Hard to find collisions

 Adversary can’t find two inputs that produce same hash

 Hard to alter message without modifying digest

 Can succinctly refer to large objects

 Hard to invert

 Given hash, adversary can’t find input that produces it

 Can refer obliquely to private objects (e.g., passwords)

 Send hash of object rather than object itself

CS 241 © CS 241 Staff - University of Illinois 21

Effects of Cryptographic

Hashing

CS 241 © CS 241 Staff - University of Illinois 22

Cryptographic Toolkit

 Confidentiality: Encryption

 Integrity: Cryptographic Hash

 Authentication: ?

 Provenance: ?

CS 241 © CS 241 Staff - University of Illinois 23

Public Key Authentication

 Each party only knows the

other’s public key

 No secret key need be

shared

 A encrypts a nonce

(random number) x using

B’s public key

 B proves it can recover x

 A can authenticate itself to

B in the same way

CS 241 © CS 241 Staff - University of Illinois

A B

24

Cryptographic Toolkit

 Confidentiality: Encryption

 Integrity: Cryptographic Hash

 Authentication: Decrypting nonce

 Provenance: ?

CS 241 © CS 241 Staff - University of Illinois 25

Digital Signatures

 Alice publishes public key KE

 Prove she is Alice!

 Send a message x encrypted with her private

key KD

 Anyone w/ public key KE can recover x, verify

that Alice must have sent the message

 It provides a digital signature

 Alice can’t deny later deny it non-repudiation

CS 241 © CS 241 Staff - University of Illinois 26

RSA Crypto & Signatures

CS 241 © CS 241 Staff - University of Illinois 27

Our Crypto Toolkit

 Secure key distribution

 Symmetric ciphers (e.g., AES) offer fast,

presumably strong confidentiality

 Public key cryptography

 No need of secure key distribution

 But not as computationally efficient

 Often addressed by using public key crypto to exchange

a session key then used for symmetric crypto

 Not guaranteed secure

 but major result if not

CS 241 © CS 241 Staff - University of Illinois 28

Our Crypto Toolkit

 Cryptographically strong hash functions

 Building block for integrity (e.g., SHA-1, SHA-2)

 As well as providing concise digests

 And providing a way to prove you know

something (e.g., passwords) without revealing it

(non-invertibility)

 But: worrisome recent results regarding their

strength

 Public key also gives us signatures

 Including sender non-repudiation
CS 241 © CS 241 Staff - University of Illinois 29

What is Missing?

 How can you relate a key to a person?

 Trust (PKIs)

 How do all these pieces fit together?

 SSL

 What about availability?

CS 241 © CS 241 Staff - University of Illinois 30

Public Key Infrastructure (PKI)

 Public key crypto is very powerful

 But tying public keys to real world

identities is quite hard

 PKI: Trust distribution mechanism

 Authentication via Digital Certificates

 Trust doesn’t mean someone is honest,

just that they are who they say they are…

CS 241 © CS 241 Staff - University of Illinois 31

Managing Trust

 The most solid level of trust is rooted in our

direct personal experience

 E.g., Alice’s trust that Bob is Bob

 Clearly doesn’t scale to a global network!

 In its absence, we rely on delegation

 Alice trusts Bob’s identity because Charlie

attests to it ….

 …. and Alice trusts Charlie

CS 241 © CS 241 Staff - University of Illinois 32

Managing Trust, con’t

 Trust is not completely transitive

 Should Alice trust Bob because she trusts Charlie …

 … and Charlie vouches for Donna …

 … and Donna says Eve is trustworthy …

 … and Eve vouches for Bob’s identity?

 Two models of delegating trust

 Rely on your set of friends and their friends

 “Web of trust”, e.g., PGP

 Rely on trusted, well-known authorities (and their minions)

 “Trusted root”, e.g., HTTPS

CS 241 © CS 241 Staff - University of Illinois 33

PKI Conceptual Framework

 Trusted-Root PKI

 Basis: well-known public key serves as root of a hierarchy

 Managed by a Certificate Authority (CA)

 Publishing a public key

 CA digitally signs statement indicating that they agree

(“certify”) that it is indeed your key

 This bunch of bits is a certificate for your key

 Includes both your public key and the signed statement

 Anyone that knows CA’s public key can verify the

signature

CS 241 © CS 241 Staff - University of Illinois 34

PKI Conceptual Framework

 Delegation of trust to the CA

 They’d better not screw up (duped into signing bogus key)

 They’d better have procedures for dealing with stolen keys

 Note: can build up a hierarchy of signing

CS 241 © CS 241 Staff - University of Illinois 35

Components of a PKI

CS 241 © CS 241 Staff - University of Illinois

36

Digital Certificate

 Binds an entity with its corresponding

public key

 Signed by a recognized and trusted

authority, i.e., Certification Authority (CA)

 Provide assurance that a particular public

key belongs to a specific entity

CS 241 © CS 241 Staff - University of Illinois 37

Digital Certificate

 Example: certificate of entity Y

Cert = E({nameY, KYpublic}, KCAprivate)

 KCAprivate: private key of Certificate Authority

 nameY: name of entity Y

 KYpublic: public key of entity Y

 In fact, they may sign whatever bits you give them

 Your browser has a bunch of CAs

CS 241 © CS 241 Staff - University of Illinois 38

Certification Authority

 People, processes responsible for creation, delivery and

management of digital certificates

 Organized in an hierarchy

 To verify signature chain, follow hierarchy up to root

 Need to trust the CA’s internal security

 Not always a good idea … http://goo.gl/84l3i

CA-1 CA-2

Root CA

CS 241 © CS 241 Staff - University of Illinois 39

Registration Authority

 People & processes responsible for

 Authenticating the identity of new entities (users

or computing devices),

 e.g. by phone, or physical presence + ID

 Issuing requests to CA for certificates

 The CA must trust the Registration Authority

CS 241 © CS 241 Staff - University of Illinois 40

Certificate Repository

 A database accessible to all users of a PKI

 Contains

 Digital certificates

 Policy information associated with certs

 Certificate revocation information

 Vital to be able to identify certs that have

been compromised

 Usually done via a revocation list

CS 241 © CS 241 Staff - University of Illinois 41

Passwords

 Only user knows password

 Someone typing correct password must be user!

 System must keep copy to

check against passwords

 What if malicious user gains access to list of

passwords?

 Need to obscure information somehow

 Mechanism

 Utilize a transformation that is difficult to reverse

without the right key (e.g. encryption)

CS 241 © CS 241 Staff - University of Illinois 42

Passwords

 Example: UNIX /etc/passwd file

 Passwd one way transform(hash)

encrypted passwd

 System stores only encrypted version, so

OK even if someone reads the file!

 When you type in your password, system

compares encrypted version

CS 241 © CS 241 Staff - University of Illinois 43

Compromising Passwords

 Password Guessing

 Often obvious passwords like birthday, favorite

color, girlfriend’s name, etc…

 Dictionary Attack

 Work way through dictionary and compare

encrypted version of dictionary words with
entries in /etc/passwd

 Dumpster Diving:

 Find pieces of paper with passwords written on

them
CS 241 © CS 241 Staff - University of Illinois 44

Good Passwords?

 Paradox

 Short passwords are easy to crack

 Long ones, people write down!

 Better technology longer passwords

 UNIX initially required lowercase, 5-letter

passwords: total of 265=10million passwords

 In 1975, 10ms to check a password1 day to crack

 In 2005, .01μs to check a password0.1 seconds to

crack

 Takes less time to check for all words in the

dictionary!

CS 241 © CS 241 Staff - University of Illinois 45

Stopping the hacker

 Extend everyone’s password with a unique number

 Early UNIX uses 12-bit “salt” dictionary attacks 4096x

harder

 Require more complex passwords
 Make people use at least 8-character passwords with upper-

case, lower-case, and numbers

 Delay checking of passwords

 Delay every remote login attempt by 1 second

 Assign very long passwords/passphrases

 Smart cards

 Biometrics!
CS 241 © CS 241 Staff - University of Illinois 46

Putting It All Together: HTTPS

 Steps after clicking on https://www.amazon.com

 https = “Use HTTP over SSL/TLS”

 SSL = Secure Socket Layer

 TLS = Transport Layer Security

 Successor to SSL, and compatible with it

 RFC 4346

 Provides security layer (authentication, encryption)

on top of TCP

 Fairly transparent to the app

CS 241 © CS 241 Staff - University of Illinois 47

HTTPS Connection (SSL/TLS)

CS 241 © CS 241 Staff - University of Illinois

 Browser (client)
connects via TCP to
Amazon’s HTTPS server

 Client sends over list of
crypto protocols it
supports

 Server picks protocols
to use for this session

 Server sends over its
certificate

 (all of this is in the clear)

Browser Amazon

48

Inside the Server’s Certificate

 Name associated with cert (e.g., Bank of America)

CS 241 © CS 241 Staff - University of Illinois 49

Inside the Server’s Certificate

 Name associated with cert (e.g., Bank of America)

 BoA’s public key

 A bunch of auxiliary info (physical address, type of

cert, expiration time)

 URL to revocation center to check for revoked keys

 Name of certificate’s signatory (who signed it)

 A public-key signature of a hash (MD5) of all this

 Constructed using the signatory’s private RSA key

CS 241 © CS 241 Staff - University of Illinois 50

Validating Amazon’s Identity

 Browser retrieves cert belonging to the signatory

 These are hardwired into the browser

 If it can’t find the cert, then warns the user that site has not

been verified

 And may ask whether to continue

 Note, can still proceed, just without authentication

 Browser uses public key in signatory’s cert to decrypt

signature

 Compares with its own MD5 hash of Amazon’s cert

 Assuming signature matches, now have high confidence it’s

indeed Amazon …

 … assuming signatory is trustworthy!

CS 241 © CS 241 Staff - University of Illinois 51

HTTPS Connection (SSL/TLS)

 Browser constructs a random
session key K

 Browser encrypts K using
Amazon’s public key

 Browser sends E(K, KApublic) to
server

 Browser displays

 All subsequent communication
encrypted w/ symmetric cipher
using key K

 e.g., client can authenticate
using a password

Browser Amazon

K

K

CS 241 © CS 241 Staff - University of Illinois 52

Solutions for basic

security requirements

 Confidentiality: Encryption

 Integrity: Cryptographic Hash

 Authentication: Decrypting nonce

 Provenance: Digital signature

 Human-level provenance: PKI

 Availability: ?

CS 241 53 © CS 241 Staff - University of Illinois

Solutions for basic

security requirements

 Confidentiality: Encryption

 Integrity: Cryptographic Hash

 Authentication: Decrypting nonce

 Provenance: Digital signature

 Human-level provenance: PKI

 Availability: ?

Crypto lets us convert “messy

failures” into “clean failures” [Dave

Clark]

e.g., authentication failure becomes

connection drop

OK, so what about availability?

CS 241 54 © CS 241 Staff - University of Illinois

Protecting Availability

CS 241 55 © CS 241 Staff - University of Illinois

Threats

56

[Arbor Networks Security Report 2010]

CS 241 © CS 241 Staff - University of Illinois

Threats to Availability

 Infrastructure compromise (e.g. BGP, DNS):

 Attack removes service from operation

 Design protocols to have limited Byzantine vulnerability

 Prevent outsiders from posing as infrastructure (crypto)

 Denial-of-Service Attacks

 Attack consumes service resources so legitimate users

can’t get any

 What are they?

 How can we defend against them?

CS 241 57 © CS 241 Staff - University of Illinois

Infrastructure compromise

Example: DNS

 What security issues does the design & operation of

the DNS raise?

 Cache poisoning!

CS 241 © CS 241 Staff - University of Illinois 60

Additional information

(variable # of resource records)

Questions

(variable # of resource records)

Answers

(variable # of resource records)
Authority

(variable # of resource

records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

DNS attack summary

 DNS currently lacks authentication

 Can’t tell if reply comes from the correct source

 Can’t tell if correct source tells the truth

 Malicious source can insert extra (mis)information

 Malicious bystander can spoof (mis)information

 Playing with caching lifetimes adds extra power to attacks

 More importantly, example of how security was

largely ignored in the original design of the Internet

CS 241 © CS 241 Staff - University of Illinois 61

Denial of Service (DoS)

 Attacker prevents legitimate users from

using something (network, server)

 Increased workload

 The overloaded component responds slowly or

not at all to legitimate requests.

 Consider the following...

CS 241 © CS 241 Staff - University of Illinois 62

Denial of Service

This slide is intended to demonstrate the concept of denial of
service by placing useful information in the middle of a
paragraph of drivel. If you’ve gotten this far, you may want to
jump to the middle or scan around, but you’re unlikely to find
the important part before I skip to the next slide, simulating the
fact that the garbage doesn’t stop coming in a denial of
service attack. In fact, in some cases you may get nothing but
garbage. If you recall how IP datagram services work, for
example, then you can reason about the likelihood of
legitimate requests spaced by increasingly long TCP timeouts
finding an empty queue slot in a router fed from another input
by a continuous stream of bogus packets. When a slot opens
up, it is quickly grabbed by the next bogus packets and rarely
available for the real thing.

CS 241 © CS 241 Staff - University of Illinois 63

Denial of Service

 So did you get the point?

CS 241 © CS 241 Staff - University of Illinois 64

read

 During a denial of service attack,

do servers continue to receive

client requests?

Denial of Service

This slide is intended to demonstrate the concept of denial of
service by placing useful information in the middle of a
paragraph of drivel. If you’ve gotten this far, you may want to
jump to the middle or scan around, but you’re unlikely to find
the important part before I skip to the next slide, simulating the
fact that the garbage doesn’t stop coming in a denial of
service attack. In fact, in some cases you may get nothing but
garbage. If you recall how IP datagram services work, for
example, then you can reason about the likelihood of
legitimate requests spaced by increasingly long TCP timeouts
finding an empty queue slot in a router fed from another input
by a continuous stream of bogus packets. When a slot opens
up, it is quickly grabbed by the next bogus packets and rarely
available for the real thing.

 CS 241 © CS 241 Staff - University of Illinois 65

In fact, in some cases you may get nothing but
garbage.

Denial of Service (DoS)

 Attacker prevents legitimate users from

using something (network, server)

 Motives?

 Retaliation

 Extortion (e.g., betting sites just before big

matches)

 Commercial advantage (disable your competitor)

 Cripple defenses (e.g., firewall) to enable

broader attack

CS 241 © CS 241 Staff - University of Illinois 66

Denial of Service (DoS)

 Often done via some form of flooding

 Can be done at different semantic levels

 Network

 Clog a link or router with a huge rate of packets

 Transport

 Overwhelm victim’s ability to handle connections

 Application

 Overwhelm victim’s ability to handle requests

CS 241 © CS 241 Staff - University of Illinois 67

CS 241 © CS 241 Staff - University of Illinois 68

How Does It Traditionally

Work?

 Example: IP spoofing

 Remember the TCP SYN segment?
 Client sends SYN to server

 Server reserves queue entry

 Server sends back SYN

 Server sends back SYN to where?
 Client IP must be included in first SYN

 What if the client lies?
“Hi, please contact Robin’s computer.”

CS 241 © CS 241 Staff - University of Illinois 69

IP Spoofing

 Pretending to be Robin’s computer
 It responds

 Queue resources freed up

 Not terribly effective

 Instead, pick a computer that probably won’t
respond
 A random number works nicely

 Return SYN gets lost

 Server waits 75 seconds before freeing queue
entry

 What are the key elements?

CS 241 © CS 241 Staff - University of Illinois 70

Key Elements of Denial of

Service Attacks

 Expansion in required work
 Easy for me, hard for you

 In spoofing,
 Creating and sending a SYN: a few microseconds

 Timing out a queue entry: 75 seconds

 Protocols that admit starvation
 IP routers

 Drop datagrams when output buffer full

 Independent of source input

 Result is that clients can be starved

 Painfully slow even without starvation

CS 241 © CS 241 Staff - University of Illinois 71

What’s New about the Recent

Attacks?

 Expansion factor allows attack by a few or
one

 Alternative
 Attack by many

 Requires many resources distributed across
Internet

 Benefits from expansion, too

 Attack software
 Probably installed indirectly

 Apparently resident for some time

 No significant trail remains

CS 241 © CS 241 Staff - University of Illinois 72

What Changed to Make These

Attacks Possible?

 Change of Internet character
 Many more machines

 Many more naive users

 Much more complex software

 Old Internet
 Very little interpretation of data (e.g., e-mail)

 Operating system bugs relative secure (by
obscurity)

 Security-savvy administrator required
(so security breaches detected and repaired)

CS 241 © CS 241 Staff - University of Illinois 73

Denial of Service Attacks in

the New Internet

 New Internet
 Point-and-click network installation

 Very broad interfaces

 Even transparent code encapsulation

 And self-installing “plug-ins”!

 Public source operating systems, too

 (and frustrated security gurus writing tools to eliminate any
remaining obscurity)

 Example of attack:
 Abuse bug in Internet Explorer to install flashing window

telling owner to download patch

 What else might someone install instead?

CS 241 © CS 241 Staff - University of Illinois 74

IP Spoofing Countermeasures

 IP spoofing
 Abuses TCP connection queue time expansion

 Considered unsolvable for quite some time

 Solved by ingenious use of cryptography

 Solution
 Return one-use key with response SYN

segment

 Reserve no queue resources

 ACK to second SYN (third step of setup) must
return the key

 IP spoofing never sends such an ACK

Denial of Service (DoS)

CS 241 75 © CS 241 Staff - University of Illinois

Denial of Service (DoS)

CS 241 76 © CS 241 Staff - University of Illinois

DoS: Network Flooding

 Goal is to clog network link(s) leading to

victim

 Either fill the link, or overwhelm their routers

 Users can’t access victim server due to

congestion

 Attacker sends traffic to victim as fast as

possible

 It will often use (many) spoofed source

addresses

CS 241 © CS 241 Staff - University of Illinois 77

DoS: Network Flooding

 Using multiple hosts (slaves, or zombies)

yields a Distributed Denial-of-Service attack,

aka DDoS

 Traffic can be varied (sources, destinations,

ports, length) so no simple filter matches it

 If attacker has enough slaves, often doesn’t

need to spoof - victim can’t shut them down

anyway! :-(

CS 241 © CS 241 Staff - University of Illinois 78

Distributed Denial-of-Service

(DDoS)

CS 241 © CS 241 Staff - University of Illinois 79

Master

Slave 1

Slave 3

Slave 4

Slave 2

Victim

Control traffic directs

slaves at victim

src = random

dst = victim

Slaves send streams of traffic

(perhaps spoofed) to victim

Very Nasty DoS Attack:

Reflectors

 Reflection

 Cause one non-compromised host to help flood another

 e.g., host A sends DNS request or TCP SYN with source

V to server R.

CS 241 © CS 241 Staff - University of Illinois 80

Reflector (R) Internet

Attacker (A)

R V

Victim (V)

 Reflection

 Cause one non-compromised host to help flood another

 e.g., host A sends DNS request or TCP SYN with source

V to server R.

Reflector (R)

Internet

Attacker (A)

V R

Victim (V)

Very Nasty DoS Attack:

Reflectors

CS 241 © CS 241 Staff - University of Illinois 81

Diffuse DDoS: Reflector Attack

CS 241 © CS 241 Staff - University of Illinois 82

Master

Slave 1

Slave 3

Slave 4

Slave 2

Victim

Control traffic

directs slaves at

victim & reflectors

Request: src = victim

 dst = reflector

Reflectors send streams of

non-spoofed but

unsolicited traffic to victim

Reflector 1

Reflector 9

Reflector 4

Reflector 2

Reflector 3

Reflector 5

Reflector 6

Reflector 7

Reflector 11
Reflector 8

Reflector 10

Reply: src = reflector

 dst = victim

Defending Against Network

Flooding

 How do we defend against such floods?

 Answer: we don’t! (not completely.)

 Big problem today!

 Techniques exist to trace spoofed traffic

back to origins

 Not useful in face of a large attack

 Techniques exist to filter traffic

 A well-designed flooding stream defies stateless

filtering

CS 241 © CS 241 Staff - University of Illinois 83

Defending Against Network

Flooding

 Best solutions to date

 Overprovision - have enough raw capacity that

it’s hard to flood your links

 Largest confirmed botnet to date: 1.5 million hosts

 Floods seen to date: as high as 100 Gbps

 Distribute your services - force attacker to flood

many points

 e.g., the root name servers

CS 241 © CS 241 Staff - University of Illinois 84

Proposed Solutions

 Network-level attacks

 Capabilities: don’t let flows send without

permission

 Shut-up message

 Application-level attacks

 Proof-of-work

 Ask clients to send more
CS 241 © CS 241 Staff - University of Illinois 85

Hooray!

We solved security!

CS 241 © CS 241 Staff - University of Illinois

…or not…It is a Big Bad

World Out There…

86

