
Signals and Timers

1

Introduction to Signals

 Signal

 Notification to a process of an event
 Interrupt whatever I was doing, and jump to signal

handler

 Enables Coordination of asynchronous events
 Email message arrives on my machine

 Mailing agent (user) process should retrieve it

 Invalid memory access happens
 OS should inform scheduler to remove process from the

processor

 Alarm clock goes off
 Process which sets the alarm should catch it

Copyright ©: University of Illinois CS 241 Staff 2

Basic Signal Concepts

 Generation
 The time the event that

causes the signal occurs

 Delivery
 The time when a process

receives the signal

 Lifetime
 The interval between

generation and delivery

 Pending
 A signal that is generated

but not delivered

 Catch
 A process catches a signal

if it executes a signal
handler when the signal is
delivered

 Alternatively, a process can
ignore a signal when it is
delivered

 Block
 A process can temporarily

prevent a signal from being
delivered by blocking it

 Signal Mask
 The set of signals currently

blocked

Copyright ©: University of Illinois CS 241 Staff 3

Generating Signals

 Symbolic name
 Starting with SIG

 Signal names are defined in <signal.h>

 Users generated signals
 e.g., SIGUSR1

 OS generated signals
 e.g., SIGSEGV – invalid memory reference

 System call generated signals
 e.g., SIGALRM – alarm

Copyright ©: University of Illinois CS 241 Staff 4

Some POSIX Required

Signals

Copyright ©: University of Illinois CS 241 Staff 5

Signal Description Default action

SIGABRT abort process implementation dependent

SIGALRM alarm clock abnormal termination

SIGBUS access undefined part of memory implementation dependent

SIGCHLD child terminated, stopped or

continued

ignore

SIGILL invalid hardware instruction implementation dependent

SIGINT interactive attention signal (usually

ctrl-C)

abnormal termination

SIGKILL terminated (cannot be caught or

ignored)

abnormal termination

Some POSIX Required

Signals

Copyright ©: University of Illinois CS 241 Staff 6

Signal Description Default action

SIGSEGV Invalid memory reference implementation dependent

SIGSTOP Execution stopped stop

SIGTERM termination Abnormal termination

SIGTSTP Terminal stop stop

SIGTTIN Background process attempting read stop

SIGTTOU Background process attempting write stop

SIGURG High bandwidth data available on

socket

ignore

How Signals Work

Copyright ©: University of Illinois CS 241 Staff 7

Signal Generated
Process

Signal delivered

if signal not blocked
by signal mask...

Signal Caught by handler

Return from Signal Handler

Signal
Mask

Signal Handler Signal
Mask

Process Resumes

Signal
Mask

A little puzzle

 Signals can be seen as a kind of

interprocess communication

 What’s the difference between signals

and, say, pipes or shared memory?

 Asynchronous notification

 Doesn’t send a “message” as such; just

a signal number

 Puzzle: Then how could I do this?

Copyright ©: University of Illinois CS 241 Staff 8

Run demo

Signaling

Process 1 Process 2

Kernel 1. Generate

a signal

2. Kernel

representation

3. Deliver

signal

Copyright ©: University of Illinois CS 241 Staff 9

Signaling

Process 1 Process 2

Kernel 1. Generate

a signal

2. Kernel

representation

3. Deliver

signal

Copyright ©: University of Illinois CS 241 Staff 10

Generating a signal

 Generated by a process
 System call kill(pid, signal)

 Sends signal to process pid

 Poorly named: sends any signal, not just SIGKILL

 Generated by the kernel, when...
 a child process exits or is stops (SIGCHLD)

 floating point exception, e.g. div. by zero
(SIGFPE)

 bad memory access (SIGSEGV)

 ...

Copyright ©: University of Illinois CS 241 Staff 11

Generating signals from

the command line

 Signal a process from the command line
 Use kill

 kill -l
 List the signals the system understands

 kill [-signal] pid

 Send signal to the process with ID pid.

 Optional argument may be a name or a number
(default is SIGTERM).

 To unconditionally kill a process
 kill -9 pid which is the same as

 kill -SIGKILL pid

Copyright ©: University of Illinois CS 241 Staff 12

Generating signals in interactive

terminal applications

 CTRL-C is SIGINT

 Interactive attention signal

 CTRL-Z is SIGSTOP

 Execution stopped – cannot be ignored

 CTRL-Y is SIGCONT

 Execution continued if stopped

 CTRL-\ is SIGQUIT

 Interactive termination: core dump

Copyright ©: University of Illinois CS 241 Staff 13

A program can signal itself

 Similar to raising an exception
 raise(signal) or

 kill(getpid(), signal)

 Or can signal after a delay
 unsigned alarm(unsigned seconds);

 Calls are not stacked
 any previously set alarm() is cancelled

 alarm(20)
 Send SIGALRM to calling process after 20 seconds

 alarm(0)
 cancels current alarm

Copyright ©: University of Illinois CS 241 Staff 14

A program can signal itself

 Example: infinite loop ... for 10

seconds

int main(void) {

 alarm(10);

 while(1);

}

Copyright ©: University of Illinois CS 241 Staff 15

Morbid example

#include <stdlib.h>

#include <signal.h>

int main(int argc, char** argv) {

 while (1) {

 if (fork())

 sleep(30);

 else

 kill(getppid(), SIGKILL);

 }

}

 What does this do?

Copyright ©: University of Illinois CS 241 Staff 16

Signaling

Process 1 Process 2

Kernel 1. Generate

a signal

2. Kernel

representation

3. Deliver

signal

Copyright ©: University of Illinois CS 241 Staff 18

Kernel representation

 A signal is related to a specific process

 In the process’s PCB, kernel stores

 Set of pending signals
 Generated but not yet delivered

 Set of blocked signals
 Will stay pending

 Delivered after unblocked (if ever)

 An action for each signal type
 What to do to deliver the signal

Copyright ©: University of Illinois CS 241 Staff 19

Kernel signaling procedure

 Signal arrives

 Set pending bit for this signal
 Only one bit per signal type!

 Ready to be delivered

 Pick a pending, non-blocked signal and
execute the associated action–one of:
 Ignore

 Kill process

 Execute signal handler specified by process

Copyright ©: University of Illinois CS 241 Staff 20

Signaling

Process 1 Process 2

Kernel 1. Generate

a signal

2. Kernel

representation

3. Deliver

signal

Copyright ©: University of Illinois CS 241 Staff 21

Delivering a signal

 Kernel may handle it

 SIGSTOP, SIGKILL

 Target process can’t handle these

 They are really messages to the kernel

about a process, rather than to a

process

 For most signals, target process

handles it (if it wants)

Copyright ©: University of Illinois CS 241 Staff 22

If process handles the signal...

Copyright ©: University of Illinois CS 241 Staff 23

Signal Generated
Process

Signal delivered

if signal not blocked
by signal mask...

Signal Caught by handler

Return from Signal Handler

Signal
Mask

Signal Handler Signal
Mask

Process Resumes

Signal
Mask

Signal mask

 Temporarily prevents select types of

signals from being delivered

 Implemented as a bit array

 Same as kernel’s representation of

pending and blocked signals

Copyright ©: University of Illinois CS 241 Staff 24

SigInt SigQuit SigKill … SigCont SigAbrt

1 0 1 … 1 0

Signal mask example

 Block all signals

sigset_t sigs;

sigfillset(&sigs);

sigprocmask(SIG_SETMASK, &sigs,
NULL);

 See also
 sigemptyset, sigaddset, sigdelset,

sigismember

Copyright ©: University of Illinois CS 241 Staff 25

If it’s not masked, we handle it

 Three ways to handle

 Ignore it
 Different than blocking!

 Kill process

 Run specified signal handler function

 One of these is the default

 Depends on signal type

 Tell the kernel what we want to do:
signal() or sigaction()

Copyright ©: University of Illinois CS 241 Staff 26

sigaction

#include <signal.h>

int sigaction(int signum, const struct sigaction

*act, struct sigaction *oldact);

 Change the action taken by a process on receipt of a specific

signal

 Notes

 Any valid signal except SIGKILL and SIGSTOP

 If act is non-null, new action is installed from act

 If oldact is non-null, previous action is saved in oldact

 Any

Copyright ©: University of Illinois CS 241 Staff 27

Example: Catch control-c

#include <stdio.h>

#include <signal.h>

void handle(int sig) {

 char handmsg[] = "Ha! Blocked!\n";

 int msglen = sizeof(handmsg);

 write(2, handmsg, msglen);

}

Copyright ©: University of Illinois CS 241 Staff 28

Example: Catch control-c

int main(int argc, char** argv) {

 struct sigaction sa;

 sa.sa_handler = handle;

 sa.sa_flags = 0;

 sigemptyset(&sa.sa_mask);

 sigaction(SIGINT, &sa, NULL);

 while (1) {

 printf("Fish.\n");

 sleep(1);

 }

}

Copyright ©: University of Illinois CS 241 Staff 29

Note: Need to

check for error

conditions in all

these system &

library calls!

Run demo

Potentially unexpected

behavior

 Only one pending signal of each type at a
time
 If another arrives, it is lost

 What’s an interesting thing that could
happen during a signal handler?
 Another signal arrives!

 Need to either
 Write code that does not assume mutual

exclusion (man sigaction), or

 Block signals during signal handler (signal()
and sigaction() can do this for you)

Copyright ©: University of Illinois CS 241 Staff 30

How to catch without catching

 Can wait for a signal

 No longer an asynchronous event, so no

handler!

 First block all signals

 Then call sigsuspend() or sigwait()

 Atomically unblocks signals and waits until

signal occurs

 Looks a lot like condition variables, eh?

Copyright ©: University of Illinois CS 241 Staff 31

And now back to the puzzle...

 Can we support arbitrary

communication between processes

using only signals?

 Idea

 Even with two signals, we can get 1 bit of

information from receipt of a signal....

Copyright ©: University of Illinois CS 241 Staff 32

