
Copyright ©: University of Illinois CS 241 Staff 1

Interprocess Communication

IPC Solutions

 Two options

 Support some form of shared address

space

 Shared memory, memory mapped files

 Use OS mechanisms to transport data

from one address space to another

 Pipes, FIFOs

 Messages, signals

Copyright ©: University of Illinois CS 241 Staff

Communication Over a Pipe

Copyright ©: University of Illinois CS 241 Staff

OS address

space

Process A Process B

Private

address

space

Private

address

space

msg msg msg msg msg

msg

msg

msg

msg

msg msg

msg

msg

msg

msg

UNIX Pipes

#include <unistd.h>

int pipe(int fildes[2]);

 Create a message pipe

 Anything can be written to the pipe, and read from the other end

 Data is received in the order it was sent

 OS enforces mutual exclusion: only one process at a time

 Accessed by a file descriptor, like an ordinary file

 Processes sharing the pipe must have same parent in common

 Returns a pair of file descriptors

 fildes[0] is connected to the read end of the pipe

 fildes[1] is connected to the write end of the pipe

Copyright ©: University of Illinois CS 241 Staff

UNIX Pipe Example

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <unistd.h>

int main(void) {

 int pfds[2];

 char buf[30];

 pipe(pfds);

 if (!fork()) {

 printf(" CHILD: writing to pipe\n");

 write(pfds[1], "test", 5);

 printf(" CHILD: exiting\n");

 exit(0);

 } else {

 printf("PARENT: reading from pipe\n");

 read(pfds[0], buf, 5);

 printf("PARENT: read \"%s\"\n", buf);

 wait(NULL);

 }

 return 0;

}

Copyright ©: University of Illinois CS 241 Staff

fildes[0] = read end of the pipe

fildes[1] = write end of the pipe

Really using a pipe

 Command-line pipe

 ls | wc -l

 How do we implement this with
pipe()?

 Need to attach the stdout of ls to the

stdin of wc

Copyright ©: University of Illinois CS 241 Staff

Duplicating a file descriptor

#include <unistd.h>

int dup(int oldfd);

 Create a copy of an open file descriptor

 Returns:
 Return value  0 : Success - New file descriptor on success

 Return value = -1: Error, check value of errno

 Parameters:

 oldfd: the open file descriptor to be duplicated

Copyright ©: University of Illinois CS 241 Staff

Duplicating a file descriptor

#include <unistd.h>

int dup2(int oldfd, int newfd);

 Create a copy of an open file descriptor: put new copy in a
specific location!
 Closes newfd if it was open

 Returns:
 Return value  0 : Success - New file descriptor on success

 Return value = -1: Error, check value of errno

 Parameters:
 oldfd: the open file descriptor to be duplicated

Copyright ©: University of Illinois CS 241 Staff

UNIX Pipe Example: ls | wc -l

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(void) {

 int pfds[2];

 pipe(pfds);

 if (!fork()) {

 close(1); /* close stdout */

 dup(pfds[1]); /* make stdout pfds[1] */

 close(pfds[0]); /* don't need this */

 execlp("ls", "ls", NULL);

 } else {

 close(0); /* close stdin */

 dup(pfds[0]); /* make stdin pfds[0] */

 close(pfds[1]); /* don't need this */

 execlp("wc", "wc", "-l", NULL);

 }

 return 0;

}

Copyright ©: University of Illinois CS 241 Staff

Run demo

fildes[0] = read end of the pipe

fildes[1] = write end of the pipe

UNIX Pipe Example: ls | wc -l

Copyright ©: University of Illinois CS 241 Staff

0

Parent

file descriptor

table

stdin

1 stdout

2

3 pfds[0]

pfds[1]
pipe

pipe(pfds);

4

stderr

UNIX Pipe Example: ls | wc -l

Copyright ©: University of Illinois CS 241 Staff

0

Parent

file descriptor

table

stdin

1 stdout

2

3 pfds[0]

pfds[1]
pipe

pipe(pfds);

fork()

4

stderr

0

1

2

3 pfds[0]

pfds[1] 4

Child

file descriptor

table

UNIX Pipe Example: ls | wc -l

Copyright ©: University of Illinois CS 241 Staff

0

Parent

file descriptor

table

stdin

1 stdout

2

3 pfds[0]

pfds[1]
pipe

pipe(pfds);

fork()

close(0)

4

stderr

0

1

2

3 pfds[0]

pfds[1] 4

Child

file descriptor

table

close(1)

UNIX Pipe Example: ls | wc -l

Copyright ©: University of Illinois CS 241 Staff

0

Parent

file descriptor

table

stdin

1 stdout

2

3 pfds[0]

pfds[1]
pipe

pipe(pfds);

fork()

close(0)

dup(pfds[0]);

4

0

1

2

3 pfds[0]

pfds[1] 4

Child

file descriptor

table

close(1)

dup(pfds[1]);

UNIX Pipe Example: ls | wc -l

Copyright ©: University of Illinois CS 241 Staff

0

Parent

file descriptor

table

stdin

1 stdout

2

3 pfds[0]

pfds[1]
pipe

pipe(pfds);

fork()

close(0)

dup(pfds[0]);

close(pfds[1]);

4

0

1

2

3 pfds[0]

pfds[1] 4

Child

file descriptor

table

close(1)

dup(pfds[1]);

close(pfds[0]);

UNIX Pipe Example: ls | wc -l

Copyright ©: University of Illinois CS 241 Staff

0

Parent

file descriptor

table

stdin

1 stdout

2

3 pfds[0]

pfds[1]
pipe

4

0

1

2

3 pfds[0]

pfds[1] 4

Child

file descriptor

table

UNIX Pipe Example: ls | wc -l

Copyright ©: University of Illinois CS 241 Staff

0

Parent

file descriptor

table

stdin

1 stdout

2

3 pfds[0]

pfds[1]
pipe

execlp("wc", "wc", "-l", NULL);

4

0

1

2

3 pfds[0]

pfds[1] 4

Child

file descriptor

table

execlp("ls", "ls", NULL);

ls outputs

to stdout,

which is

now the in

end of the

pipe

wc takes

input from
to stdin,

which is

now the out

end of the

pipe

FIFOs

 A pipe disappears when no process has it open

 FIFOs = named pipes

 Special pipes that persist even after all the processes

have closed them

 Actually implemented as a file

#include <sys/types.h>

#include <sys/stat.h>

int status;

...

status = mkfifo("/home/cnd/mod_done", /* mode=0644 */

 S_IWUSR | S_IRUSR | S_IRGRP | S_IROTH);

Copyright ©: University of Illinois CS 241 Staff

Communication Over a FIFO

 First open blocks until second process opens the FIFO

 Can use O_NONBLOCK flag to make operations non-blocking

 FIFO is persistent : can be used multiple times

 Like pipes, OS ensures atomicity of writes and reads

Copyright ©: University of Illinois CS 241 Staff

OS address

space

Process A Process B

Private

address

space

Private

address

space

FIFO Example: Producer-

Consumer

 Producer

 Writes to fifo

 Consumer

 Reads from fifo

 Outputs data to file

 Fifo

 Ensures atomicity of write

Copyright ©: University of Illinois CS 241 Staff

FIFO Example

#include <errno.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/stat.h>

#include "restart.h"

int main (int argc, char *argv[]) {

 int requestfd;

 if (argc != 2) { /* name of consumer fifo on the command line */

 fprintf(stderr, "Usage: %s fifoname > logfile\n", argv[0]);

 return 1;

 }

Copyright ©: University of Illinois CS 241 Staff

FIFO Example

 /* create a named pipe to handle incoming requests */

 if ((mkfifo(argv[1], S_IRWXU | S_IWGRP| S_IWOTH) == -1)

 && (errno != EEXIST))

 {

 perror("Server failed to create a FIFO");

 return 1;

 }

 /* open a read/write communication endpoint to the pipe */

 if ((requestfd = open(argv[1], O_RDWR)) == -1) {

 perror("Server failed to open its FIFO");

 return 1;

 }

 /* Write to pipe like you would to a file */

 ...

}

Copyright ©: University of Illinois CS 241 Staff

What if there are multiple producers?

What if there are multiple

producers?

 Examples
 Multiple children to compute in parallel; wait for output from any

 Network server connected to many clients; take action as soon

as any one of them sends data

 Use read, write, scanf, etc.

 Problem

 Blocks waiting for that one file, even if another has data ready &

waiting!

 Solution

 Need a way to wait for any one of a set of events to happen

 Something similar to wait() to wait for any child to finish, but for

events on file descriptors

Copyright ©: University of Illinois CS 241 Staff

CS 241 Copyright ©: University of Illinois CS 241 Staff 23

Select and Poll

 Checking for input with select/poll
 Similar functions

 Parameters
 Set of file descriptors

 Set of events for each descriptor

 Timeout length

 Return value
 Set of file descriptors

 Events for each descriptor

 Notes
 Select is somewhat simpler

 Poll supports more events

CS 241 Copyright ©: University of Illinois CS 241 Staff 24

Select and Poll: Prototypes

 Select

 Wait for readable/writable file descriptors
#include <sys/time.h>

int select (int num_fds, fd_set* read_set, fd_set*

write_set, fd_set* except_set, struct timeval*

timeout);

 Poll

 Poll file descriptors for events
#include <poll.h>

int poll (struct pollfd* pfds, nfds_t nfds, int

timeout);

CS 241 Copyright ©: University of Illinois CS 241 Staff 25

Select

int select (int num_fds, fd_set* read_set, fd_set*

write_set, fd_set* except_set, struct timeval*

timeout);

 Wait for readable/writable file descriptors.

 Return:

 Number of descriptors ready

 -1 on error, sets errno

 Parameters:
 num_fds:

 number of file descriptors to check, numbered from 0

 read_set, write_set, except_set:

 Sets (bit vectors) of file descriptors to check for the specific condition

 timeout:

 Time to wait for a descriptor to become ready

CS 241 Copyright ©: University of Illinois CS 241 Staff 26

File Descriptor Sets

 Bit vectors

 Often 1024 bits, only first num_fds checked

 Macros to create and check sets

fds_set myset;

void FD_ZERO (&myset); /* clear all bits */

void FD_SET (n, &myset); /* set bits n to 1 */

void FD_CLEAR (n, &myset); /* clear bit n */

int FD_ISSET (n, &myset); /* is bit n set? */

CS 241 Copyright ©: University of Illinois CS 241 Staff 27

File Descriptor Sets

 Three conditions to check for

 Readable

 Data available for reading

 Writable

 Buffer space available for writing

 Exception

 Out-of-band data available (TCP)

CS 241 Copyright ©: University of Illinois CS 241 Staff 28

Select: Example

fd_set my_read;

FD_ZERO(&my_read);

FD_SET(0, &my_read);

if (select(1, &my_read, NULL, NULL) == 1) {

 ASSERT(FD_ISSET(0, &my_read);

 /* data ready on stdin */

CS 241 Copyright ©: University of Illinois CS 241 Staff 29

Poll

#include <poll.h>

int poll (struct pollfd* pfds, nfds_t nfds, int

timeout);

 Poll file descriptors for events.

 Return:

 Number of descriptors with events

 -1 on error, sets errno

 Parameters:
 pfds:

 An array of descriptor structures. File descriptors, desired events and returned
events

 nfds:

 Length of the pfds array

 timeout:

 Timeout value in milliseconds

CS 241 Copyright ©: University of Illinois CS 241 Staff 30

Descriptors

 Structure
struct pollfd {

 int fd; /* file descriptor */

 short events; /* queried event bit mask */

 short revents; /* returned event mask */

 Note:

 Any structure with fd < 0 is skipped

CS 241 Copyright ©: University of Illinois CS 241 Staff 31

Event Flags

 POLLIN:

 data available for reading

 POLLOUT:

 Buffer space available for writing

 POLLERR:

 Descriptor has error to report

 POLLHUP:

 Descriptor hung up (connection closed)

 POLLVAL:

 Descriptor invalid

CS 241 Copyright ©: University of Illinois CS 241 Staff 32

Poll: Example

struct pollfd my_pfds[1];

my_pfds[0].fd = 0;

my_pfds[0].events = POLLIN;

if (poll(&my_pfds, 1, INFTIM) == 1) {

 ASSERT (my_pfds[0].revents & POLLIN);

 /* data ready on stdin */

IPC Solutions

 Two options

 Support some form of shared address

space

 Shared memory, memory mapped files

 Use OS mechanisms to transport data

from one address space to another

 Pipes, FIFOs

 Messages, signals

Copyright ©: University of Illinois CS 241 Staff

Message-based IPC

 Message system

 Enables communication without resorting to
shared variables

 To communicate, processes P and Q must

 Establish a communication link between them

 Exchange messages

 Two operations

 send(message)

 receive(message)

Copyright ©: University of Illinois CS 241 Staff

Message Passing

Copyright ©: University of Illinois CS 241 Staff

Process A Process B

Direct

Process A Process C

Indirect

Process B

Direct Message Passing

 Processes must name each other explicitly
 send (P, message)

 Send a message to process P

 receive(Q, message)
 Receive a message from process Q

 receive(&id, message)
 Receive a message from any process

 Link properties
 Established automatically

 Associated with exactly one pair of processes

 There exists exactly one link between each pair

 Limitation
 Must know the name or ID of the process(es)

Copyright ©: University of Illinois CS 241 Staff

Indirect Message Passing

 Process names a mailbox (or port)

 Each mailbox has a unique id

 Processes can communicate only if they share a
mailbox

 Link properties

 Established only if processes share a common
mailbox

 May be associated with many processes

 Each pair of processes may share multiple links

 Link may be unidirectional or bi-directional

Copyright ©: University of Illinois CS 241 Staff

Mailbox Ownership

 Process

 Only the owner receives messages through

mailbox

 Other processes only send.

 When process terminates, any “owned”

mailboxes are destroyed

 System

 Process that creates mailbox owns it (and so

may receive through it) but may transfer

ownership to another process.

Copyright ©: University of Illinois CS 241 Staff

Indirect Message Passing

 Mailboxes are a resource

 Create and Destroy

 Primitives

 send(A, message)

 Send a message to mailbox A

 receive(A, message)

 Receive a message from mailbox A

Copyright ©: University of Illinois CS 241 Staff

Indirect Message Passing

 Mailbox sharing
 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Options
 Allow a link to be associated with at most two

processes

 Allow only one process at a time to execute a
receive operation

 Allow the system to arbitrarily select the receiver
and notify the sender

Copyright ©: University of Illinois CS 241 Staff

IPC and Synchronization

 Blocking == synchronous
 Blocking send

 Sender blocks until the message is received

 Blocking receive
 Receiver blocks until a message is available

 Non-blocking == asynchronous
 Non-blocking send

 Sender sends the message and continues

 Non-blocking receive
 Receiver receives a valid message or null

Copyright ©: University of Illinois CS 241 Staff

Buffering

 IPC message queues

1. Zero capacity
 No messages may be queued

 Sender must wait for receiver

2. Bounded capacity
 Finite buffer of n messages

 Sender blocks if link is full

3. Unbounded capacity
 Infinite buffer space

 Sender never blocks

Copyright ©: University of Illinois CS 241 Staff

Buffering

 Is a buffer needed?
P1: send(P2, x) P2: receive(P1, x)

 receive(P2, y) send(P1, y)

 Is a buffer needed?
P1: send(P2, x) P2: send(P1, x)

 receive(P2, y) receive(P1, y)

Copyright ©: University of Illinois CS 241 Staff

Example: Message Passing

void Producer() {

 while (TRUE) {

 /* produce item */

 build_message(&m, item);

 send(consumer, &m);

 receive(consumer, &m); /* wait for ack */

 }

}

void Consumer {

 while(TRUE) {

 receive(producer, &m);

 extract_item(&m, &item);

 send(producer, &m); /* ack */

 /* consume item */

 }

}

Copyright ©: University of Illinois CS 241 Staff

Signals == Messages

 Signals are a simple form of message

passing

 Non-blocking

 No buffering

Copyright ©: University of Illinois CS 241 Staff

