
Copyright ©: University of Illinois CS 241 Staff 1

Interprocess Communication

Interprocess Communciation

 What is IPC?

 Mechanisms to transfer data between

processes

 Why is it needed?

 Not all important procedures can be

easily built in a single process

Copyright ©: University of Illinois CS 241 Staff

Interprocess Communication

 Cooperating processes

 Can affect or be affected by other
processes, including sharing data
 Just like cooperating threads!

 Benefits
 Information sharing

 Computation speedup

 Modularity

 Convenience

Copyright ©: University of Illinois CS 241 Staff

Interprocess Communication

 Can you think of a common use of

IPC?

 Can you think of any large applications

that use IPC?

Copyright ©: University of Illinois CS 241 Staff

Google Chrome architecture

(figure borrowed from Google)

 Separate processes for

browser tabs to protect

the overall application

from bugs and glitches

in the rendering engine

 Restricted access from

each rendering engine

process to others and to

the rest of the system

Copyright ©: University of Illinois CS 241 Staff

ht
tp

s:
//s

ite
s.

go
og

le
.c

om
/a

/c
hr

om
iu

m
.o

rg
/d

ev
/d

ev
el

op
er

s/
de

si
gn

-d
oc

um
en

ts
/m

ul
ti-

pr
oc

es
s-

ar
ch

ite
ct

ur
e

Google Chrome architecture

(figure borrowed from Google)

 A named pipe is

allocated for each

renderer process for

communication with the

browser process

 Pipes are used in

asynchronous mode to

ensure that neither end

is blocked waiting for the

other

Copyright ©: University of Illinois CS 241 Staff

ht
tp

s:
//s

ite
s.

go
og

le
.c

om
/a

/c
hr

om
iu

m
.o

rg
/d

ev
/d

ev
el

op
er

s/
de

si
gn

-d
oc

um
en

ts
/m

ul
ti-

pr
oc

es
s-

ar
ch

ite
ct

ur
e

IPC Communications Model

 Each process has a private address space

 No process can write to another process’s space

 How can we get data from process A to process B?

Copyright ©: University of Illinois CS 241 Staff

OS address

space

Process A Process B

Private

address

space

Private

address

space

IPC Solutions

 Two options

 Support some form of shared address

space

 Shared memory, memory mapped files

 Use OS mechanisms to transport data

from one address space to another

 Pipes, FIFOs

 Messages, signals

Copyright ©: University of Illinois CS 241 Staff

Shared Memory

 Processes share the same segment of

memory directly

 Memory is mapped into the address space of

each sharing process

 Memory is persistent beyond the lifetime of the

creating or modifying processes (until deleted)

 Mutual exclusion must be provided by

processes using the shared memory

Copyright ©: University of Illinois CS 241 Staff

Shared Memory

 Processes request the segment

 OS maintains the segment

 Processes can attach/detach the segment

Copyright ©: University of Illinois CS 241 Staff

OS address

space

Private

address

space

Process A Process B

Private

address

space

Shared

segment

Shared Memory

 Can mark segment for deletion on last
detach

Copyright ©: University of Illinois CS 241 Staff

OS address

space

Process A Process B

Private

address

space

Shared

segment

Private

address

space

Private

address

space

POSIX Shared Memory

#include <sys/types.h>

#include <sys/shm.h>

 Create identifier (“key”) for a shared memory
segment

 key_t ftok(const char *pathname, int proj_id);

k = ftok(“/my/file”, 0xaa);

 Create shared memory segment
 int shmget(key_t key, size_t size, int shmflg);

id = shmget(key, size, 0644 | IPC_CREAT);

 Access to shared memory requires an attach
 void *shmat(int shmid, const void *shmaddr, int shmflg);

shared_memory = (char *) shmat(id, (void *) 0, 0);

Copyright ©: University of Illinois CS 241 Staff

POSIX Shared Memory

 Write to the shared memory using normal system

calls
sprintf(shared_memory, "Writing to shared

memory");

 Detach the shared memory from its address space
int shmdt(const void *shmaddr);

shmdt(shared_memory);

Copyright ©: University of Illinois CS 241 Staff

Shared Memory example

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#define SHM_SIZE 1024 /* a 1K shared memory segment */

int main(int argc, char *argv[]) {

 key_t key;

 int shmid;

 char *data;

 int mode;

 Copyright ©: University of Illinois CS 241 Staff

Shared Memory example

 /* make the key: */

 if ((key = ftok("shmdemo.c", 'R')) == -1) {

 perror("ftok");

 exit(1);

 }

 /* connect to (and possibly create) the segment: */

 if ((shmid = shmget(key, SHM_SIZE, 0644 | IPC_CREAT)) == -1) {

 perror("shmget");

 exit(1);

 }

 /* attach to the segment to get a pointer to it: */

 data = shmat(shmid, (void *)0, 0);

 if (data == (char *)(-1)) {

 perror("shmat");

 exit(1);

 }

Copyright ©: University of Illinois CS 241 Staff

Shared Memory example

 /* read or modify the segment, based on the command line: */

 if (argc == 2) {

 printf("writing to segment: \"%s\"\n", argv[1]);

 strncpy(data, argv[1], SHM_SIZE);

 } else

 printf("segment contains: \"%s\"\n", data);

 /* detach from the segment: */

 if (shmdt(data) == -1) {

 perror("shmdt");

 exit(1);

 }

 return 0;

}

Copyright ©: University of Illinois CS 241 Staff

Run demo

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files

 Memory-mapped file I/O

 Map a disk block to a page in memory

 Allows file I/O to be treated as routine memory access

 Use

 File is initially read using demand paging

 When needed, a page-sized portion of the file is read from

the file system into a physical page of memory

 Subsequent reads/writes to/from that page are treated as

ordinary memory accesses

Memory Mapped Files

 Traditional File I/O

 Calls to file I/O functions (e.g., read() and

write())

 First copy data to a kernel's intermediary buffer

 Then transfer data to the physical file or the process

 Intermediary buffering is slow and expensive

 Memory Mapping
 Eliminate intermediary buffering

 Significantly improve performance

Copyright ©: University of Illinois CS 241 Staff

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files

Memory Mapped File

In Blocks

VM of User 1

mmap requests

Disk

File

Blocks of data

From file mapped

To VM

VM of User 2

Blocks of data

From file mapped

To VM

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files:

Benefits

 Treats file I/O like memory access rather than
read(), write() system calls

 Simplifies file access; e.g., no need to fseek()

 Streamlining file access

 Access a file mapped into a memory region via pointers

 Same as accessing ordinary variables and objects

 Dynamic loading
 Map executable files and shared libraries into address space

 Programs can load and unload executable code sections

dynamically

Copyright ©: University of Illinois CS 241 Staff

Memory Mapped Files:

Benefits

 Several processes can map the same file

 Allows pages in memory to be shared -- saves memory

space

 Memory persistence

 Enables processes to share memory sections that persist

independently of the lifetime of a certain process

Enables IPC!

Copyright ©: University of Illinois CS 241 Staff

POSIX Memory Mapping

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot,

 int flags, int fd, off_t off);

 Memory map a file

 Establish mapping from the address space of the process to the

object represented by the file descriptor

 Parameters:

 addr: the starting memory address into which to map the file

 len: the length of the data to map into memory

 prot: the kind of access to the memory mapped region

 flags: flags that can be set for the system call

 fd: file descriptor

 off: the offset in the file to start mapping from

Copyright ©: University of Illinois CS 241 Staff

POSIX Memory Mapping

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot,

 int flags, int fd, off_t off);

 Memory map a file

 Establish mapping from the address space of the process to the

object represented by the file descriptor

File fd

len off

Copyright ©: University of Illinois CS 241 Staff

POSIX Memory Mapping

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot,

 int flags, int fd, off_t off);

 Memory map a file

 Establish a mapping between the address space of the process

to the memory object represented by the file descriptor

 Return value: pointer to mapped region

 On success, implementation-defined function of addr and

flags.

 On failure, sets errno and returns MAP_FAILED

Copyright ©: University of Illinois CS 241 Staff

POSIX Memory Mapping

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot,

 int flags, int fd, off_t off);

 Memory map a file

 Establish a mapping between the address space of the process

to the memory object represented by the file descriptor

File fd

Memory

addr

len off

Copyright ©: University of Illinois CS 241 Staff

mmap options

 Protection Flags

 PROT_READ Data can be read

 PROT_WRITE Data can be written

 PROT_EXEC Data can be executed

 PROT_NONE Data cannot be accessed

 Flags

 MAP_SHARED Changes are shared.

 MAP_PRIVATE Changes are private.

 MAP_FIXED Interpret addr exactly

Copyright ©: University of Illinois CS 241 Staff

mmap Example

 Map first 4kb of file and read an integer
#include <errno.h>

#include <fcntl.h>

#include <sys/mman.h>

#include <sys/types.h>

int main(int argc, char *argv[]) {

 int fd;

 void *pregion;

 if (fd = open(argv[1], O_RDONLY) <0) {

 perror("failed on open");

 return –1;

 }

 write(fd,"\0",1); // make sure at least 1 page is mapped

Copyright ©: University of Illinois CS 241 Staff

mmap Example

 pregion = mmap(NULL, 4096, PROT_READ,

 MAP_SHARED, fd, 0);

 if (pregion == MAP_FAILED) {

 perror("mmap failed")

 return –1;

 }

 close(fd); /* close the physical file */

 /* access mapped memory; read the first int in

 * the mapped file */

 int val = *((int*) pregion);

}

Copyright ©: University of Illinois CS 241 Staff

munmap

#include <sys/mman.h>

int munmap(void *addr, size_t len);

 Remove a mapping

 Return value

 0 on success

 -1 on error, sets errno

 Parameters:

 addr: returned from mmap()

 len: same as the len passed to mmap()

Copyright ©: University of Illinois CS 241 Staff

msync

#include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

 Write all modified data to permanent storage locations

 Return value

 0 on success

 -1 on error, sets errno

 Parameters:

 addr: returned from mmap()

 len: same as the len passed to mmap()

 flags:

 MS_ASYNC = Perform asynchronous writes

 MS_SYNC = Perform synchronous writes

 MS_INVALIDATE = Invalidate cached data

31 Copyright ©: University of Illinois CS 241 Staff

Example 2: Shared memory
using mmap

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <fcntl.h>

#include <string.h>

#include <sys/mman.h>

#include <sys/types.h>

int main(int argc, char** argv) {

 int fd;

 char * shared_mem;

 fd = open(argv[1], O_RDWR | O_CREAT);

 write(fd,"\0",1); // make sure at least 1 page is mapped

 shared_mem = mmap(NULL, 10, PROT_READ | PROT_WRITE,

 MAP_SHARED, fd, 0);

 close(fd);

32 Copyright ©: University of Illinois CS 241 Staff

Example 2: Shared memory
using mmap

 if (!strcmp(argv[2], "read")) {

 while (1) {

 printf("%s\n", shared_mem);

 sleep(1);

 }

 }

Reader

 else { while (1)

scanf("%s\n", shared_mem); }

}

Writer

Run demo

Copyright ©: University of Illinois CS 241 Staff

Recall POSIX Shared Mem...

#include <sys/shm.h>

int shmget(key_t key, size_t size, int
shmflg);

 Create shared memory segment
id = shmget(key, size, 0644 | IPC_CREAT);

void *shmat(int shmid, const void

*shmaddr, int shmflg);

 Access to shared memory requires an attach
shared_memory = (char *) shmat(id, (void

*) 0, 0);

34 Copyright ©: University of Illinois CS 241 Staff

How do mmap and POSIX

shared memory compare?

 Persistence

 shm memory kept in memory

 Remains available until system is shut down

 mmap backed by a file

 Persists even after programs quit or machine

reboots

34

Copyright ©: University of Illinois CS 241 Staff

Memory mapped files and

virtual memory

It might be interesting to map

a page-sized file …

Memory Mapped File

In Blocks

VM of User 1

mmap requests

Disk

File

Blocks of data

From file mapped

To VM

VM of User 2

Blocks of data

From file mapped

To VM

Copyright ©: University of Illinois CS 241 Staff

Memory mapped files and

virtual memory

#include <unistd.h>

long sysconf(int name);

 Determine the current value of a configurable system variable

 Return value

 0 on success

 -1 on error, sets errno

 Parameters:

 name: the system variable to be queried
 _SC_PAGESIZE

Copyright ©: University of Illinois CS 241 Staff

sysconf: Creating page-sized

memory mapped segments

#include <errno.h>

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/mman.h>

main(void) {

 size_t bytesWritten = 0;

 int fd;

 int PageSize;

 const char text = "This is a test";

Copyright ©: University of Illinois CS 241 Staff

Example

 if ((PageSize = sysconf(_SC_PAGE_SIZE)) < 0) {

 perror("sysconf() Error=");

 return -1;

 }

 fd = open("/tmp/mmsyncTest", (O_CREAT | O_TRUNC |

 O_RDWR), (S_IRWXU | S_IRWXG | S_IRWXO));

 if (fd < 0) {

 perror("open() error");

 return fd;

 }

 off_t lastoffset = lseek(fd, PageSize, SEEK_SET);

 bytesWritten = write(fd, "x", 1);

 if (bytesWritten != 1) {

 perror("write error. ");

 return -1;

 }

Copyright ©: University of Illinois CS 241 Staff

More Examples

 /* mmap the file. */

 void *address;

 int len;

 off_t my_offset = 0;

 len = PageSize;

 /* Map one page */

 address = mmap(NULL, len, PROT_WRITE, MAP_SHARED, fd,

 my_offset);

 if (address == MAP_FAILED) {

 perror("mmap error.");

 return -1;

 }

Copyright ©: University of Illinois CS 241 Staff

More Examples

 /* Move some data into the file using memory map. */

 (void) strcpy((char*) address, text);

 /* use msync to write changes to disk. */

 if (msync(address, PageSize , MS_SYNC) < 0) {

 perror("msync failed with error:");

 return -1;

 } else

 (void) printf("%s","msync completed successfully.");

 close(fd);

 unlink("/tmp/msyncTest");

}

Run demo

Copyright ©: University of Illinois CS 241 Staff

Illegal Memory Access

 Use signals!

 SIGSEGV signal allows you to catch

references to memory that have the

wrong protection mode

 Coming soon... signals!

