
Deadlocks

Copyright ©: University of Illinois CS 241 Staff 1

 Addressing Deadlock

 Prevention
 Design the system so that deadlock is impossible

 Detection & Recovery
 Check for deadlock (periodically or sporadically) and

identify and which processes and resources involved

 Recover by killing one of the deadlocked processes and
releasing its resources

 Avoidance
 Construct a model of system states, then choose a

strategy that, when resources are assigned to processes,
will not allow the system to go to a deadlock state

 Manual intervention
 Have the operator reboot the machine if it seems too slow

Copyright ©: University of Illinois CS 241 Staff 2

Deadlock Avoidance

 Deadlock detection
 Assumes all resources are requested at start

time

 Realistic scenarios
 Resources are requested incrementally

 Deadlock Avoidance: Basic idea
 Try to see the worst that could happen

 Do not grant an incremental resource request to
a process if this allocation might lead to
deadlock

 Conservative/pessimistic approach

Copyright ©: University of Illinois CS 241 Staff 3

Deadlock Avoidance

 Assume OS knows

 Number of available instances of each resource

 Mutex: a resource with one instance available

 Semaphore: a resource with possibly multiple “instances”

available

 For each process

 Current amount of each resource it owns

 Maximum amount of each resource it might ever need

 For a mutex this means: Will the process ever lock the mutex?

 Assume processes are independent

 If one blocks, others can finish if they have enough

resources

Copyright ©: University of Illinois CS 241 Staff 4

Deadlock and Resources

 Single instance of each resource

 Find cycle in resource allocation graph

 Multiple instance of each resource

 Process can request any number of

instances for a given resource

 May only use some of them

Copyright ©: University of Illinois CS 241 Staff 5

Deadlock Avoidance:

Safe vs. Unsafe

 Approach

 Define a model of system states (SAFE, UNSAFE)

 Choose a strategy that guarantees that the system will not

go to a deadlock state

 Safe

 Guarantee

 There is some scheduling order in which every process can

run to completion even if all of them suddenly and

simultaneously request their maximum number of resources

 From a safe state

 The system can guarantee that all processes will finish

Copyright ©: University of Illinois CS 241 Staff 6

Deadlock Avoidance:

Safe vs. Unsafe

 Approach

 Define a model of system states (SAFE, UNSAFE)

 Choose a strategy that guarantees that the system will not

go to a deadlock state

 Unsafe state: no such guarantee

 A deadlock state is an unsafe state

 An unsafe state may not be a deadlock state

 Some process may be able to complete

Copyright ©: University of Illinois CS 241 Staff 7

Safe vs. Unsafe

 Safe
 There is a way for all processes to finish executing

without deadlocking

 Goal
 Guide the system down one of those paths

successfully

8 Copyright ©: University of Illinois CS 241 Staff

Safe

Unsafe

Deadlocked

How to guide the system down

a safe path of execution

 New function: is a given state safe?

 When a resource allocation request
arrives
 Pretend that we approve the request

 Call function: Would we then be safe?

 If safe
 Approve request

 Otherwise
 Block process until its request can be safely

approved

9 Copyright ©: University of Illinois CS 241 Staff

Is a state safe?

 What is a “state”?
 For each resource,

 Current amount available

 Current amount allocated to each process

 Future amount needed by each process

Memory Mutex m

Free

P1 alloc

P2 alloc

P1 need

P2 need

10 Copyright ©: University of Illinois CS 241 Staff

Is a state safe?

 Safe
 There is an execution order that can finish

 Pessimistic assumption
 Processes never release resources until

they’re done

11 Copyright ©: University of Illinois CS 241 Staff

Is a state safe?

 Safe
 There is an execution order that can finish

 P1 can finish using what it has plus what’s

free

 P2 can finish using what it has plus what’s
free, plus what P1 will release when it
finishes

 P3 can finish using what it has, plus what’s
free, plus what P1 and P2 will release when
they finish

 ...
12 Copyright ©: University of Illinois CS 241 Staff

Is a state safe?

 Search for an order P1, P2, P3, ... such that:
 P1’s max resource needs ≤ what it has +

 what’s free

 P2’s max resource needs ≤ what it has +

 what’s free +
 what P1 will release

 when it finishes

 P3’s max resource needs ≤ what it has +

 what’s free +
 what P1 and P2 will

 release when they finish

Copyright ©: University of Illinois CS 241 Staff 13

How do we figure that out?

 Try all orderings?

How many orderings do we need to find?

Inspiration...

14 Copyright ©: University of Illinois CS 241 Staff

Playing pickup sticks

with processes

 Pick up
 Find a stick on top

 = Find a process that can
finish with what it has plus
what’s free

 Remove stick

 = Process releases its
resources

 Repeat
 Until all processes have

finished
 Answer: safe

 Or we get stuck
 Answer: unsafe

15 Copyright ©: University of Illinois CS 241 Staff

Try it: is this state safe?

P2 alloc

Memory Mutex M

Free

P2 need

P1 alloc

P1 need

16 Copyright ©: University of Illinois CS 241 Staff

Which

process can

go first?

Example 2: Is this state safe?

P2 alloc

Memory

Free

P2 need

P1 alloc

P1 need

P3 alloc

P3 need

23 Copyright ©: University of Illinois CS 241 Staff

Can P1 go first?

Can P2 go first?

Can P3 go first?

How to guide the system down

a safe path of execution

 New function: is a given state safe?

 When a resource allocation request
arrives
 Pretend that we approve the request

 Call function: Would we then be safe?

 If safe
 Approve request

 Otherwise
 Block process until its request can be safely

approved

27 Copyright ©: University of Illinois CS 241 Staff

Banker’s

Algorithm

Banker’s Algorithm

 Dijkstra, 1965

 Each customer tells banker the maximum

number of resources it needs, before it

starts

 Customer borrows resources from banker

 Customer returns resources to banker

 Banker only lends resources if the system

will stay in a safe state after the loan

 Customer may have to wait

28 Copyright ©: University of Illinois CS 241 Staff

Banker’s Algorithm: Take 1

For each request

 If approved,
would we still
be safe?

 If yes
 Approve

 If no
 Block

Copyright ©: University of Illinois CS 241 Staff 29

P2 alloc

Memory

Free

P2 need

P1 alloc

P1 need

Disk

Banker’s Algorithm: Take 2

mutex m1, m2;

int x, y;

while (1) {

 lock(m1);

 x++;

 unlock(m1);

 lock(m2);

 y++;

 unlock(m2);

}

m1

Free

P2 alloc

P2 need

P1 alloc

P1 need

m2

42 Copyright ©: University of Illinois CS 241 Staff

Safe

Unsafe

Deadlock

ed

Banker’s algorithm example 2

46 Copyright ©: University of Illinois CS 241 Staff

 Given
 n resource types

 P processes

 p.Max[1…n]

 Maximum number of
resource i needed by p

 p.Alloc[i]
 Number of instances of

resource i held by p

 <= p.Max[i]

 Avail [1…n]

 Current number of available
resources of each type

 p.Need[i] = p.MAX[i]
- p.Alloc[i]

 Algorithm:

while (there exists a p in P such
that {for all i (p.Need[i] <=
Available[i])}) {

 for (all i) {

 Avail [i] += p.Alloc[i];

 P = P - p;

 }

}

 If P is empty then system is safe

47

Formalized Banker’s Algorithm

Copyright ©: University of Illinois CS 241 Staff

Current Allocation

Can P1 request (A:1 B:0 C:2) ?

Pr Alloc Max Need Total

A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 10 5 5

P1 2 0 0 3 2 2 1 2 2 Available

P2 3 0 0 9 0 2 6 0 2 A B C

P3 2 1 1 2 2 2 0 1 1 3 3 2

P4 0 0 2 4 3 3 4 3 1

48 Copyright ©: University of Illinois CS 241 Staff

New Allocation

Can P0 request (A:0 B:2 C:0) ?

Pr Alloc Max Need Total

A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 10 5 5

P1 3 0 2 3 2 2 0 2 0 Available

P2 3 0 0 9 0 2 6 0 2 A B C

P3 2 1 1 2 2 2 0 1 1 2 3 0

P4 0 0 2 4 3 3 4 3 1

65 Copyright ©: University of Illinois CS 241 Staff

Outcome

 P0’s request for 2 Bs

 Cannot be granted because
 Would prevent any other process from

completing if they need their maximum claim

 Just Because It’s Unsafe Doesn’t mean it
will always deadlock

 P0 could have been allocated 2 Bs and a
deadlock might not have occurred if:
 P2 didn’t use its maximum resources but

finished using the resources it had

Copyright ©: University of Illinois CS 241 Staff 69

Concluding notes

 In general, deadlock detection or avoidance is

expensive

 Must evaluate cost and frequency of deadlock

against costs of detection or avoidance

 Deadlock avoidance and recovery may cause

indefinite postponement

 Unix, Windows use Ostrich Algorithm (do nothing)

 Typical apps use deadlock prevention (order locks)

 Transaction systems (e.g., credit card systems)

need to use deadlock

detection/recovery/avoidance/prevention (why?)

70 Copyright ©: University of Illinois CS 241 Staff

