
Deadlocks 
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 Addressing Deadlock 

 Prevention 
 Design the system so that deadlock is impossible 

 Detection & Recovery 
 Check for deadlock (periodically or sporadically) and 

identify and which processes and resources involved  

 Recover by killing one of the deadlocked processes and 
releasing its resources 

 Avoidance 
 Construct a model of system states, then choose a 

strategy that, when resources are assigned to processes, 
will not allow the system to go to a deadlock state 

 Manual intervention 
 Have the operator reboot the machine if it seems too slow 
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Deadlock Avoidance 

 Deadlock detection 
 Assumes all resources are requested at start 

time 

 Realistic scenarios 
 Resources are requested incrementally 

 Deadlock Avoidance: Basic idea 
 Try to see the worst that could happen 

 Do not grant an incremental resource request to 
a process if this allocation might lead to 
deadlock 

 Conservative/pessimistic approach 
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Deadlock Avoidance 

 Assume OS knows 

 Number of available instances of each resource 

 Mutex: a resource with one instance available 

 Semaphore:  a resource with possibly multiple “instances” 

available 

 For each process 

 Current amount of each resource it owns 

 Maximum amount of each resource it might ever need 

 For a mutex this means: Will the process ever lock the mutex? 

 Assume processes are independent 

 If one blocks, others can finish if they have enough 

resources 
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Deadlock and Resources 

 Single instance of each resource 

 Find cycle in resource allocation graph 

 Multiple instance of each resource 

 Process can request any number of 

instances for a given resource 

 May only use some of them 
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Deadlock Avoidance:  

Safe vs. Unsafe 

 Approach 

 Define a model of system states (SAFE, UNSAFE) 

 Choose a strategy that guarantees that the system will not 

go to a deadlock state 

 Safe 

 Guarantee 

 There is some scheduling order in which every process can 

run to completion even if all of them suddenly and 

simultaneously request their maximum number of resources  

 From a safe state 

 The system can guarantee that all processes will finish 
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Deadlock Avoidance:  

Safe vs. Unsafe 

 Approach 

 Define a model of system states (SAFE, UNSAFE) 

 Choose a strategy that guarantees that the system will not 

go to a deadlock state 

 Unsafe state: no such guarantee 

 A deadlock state is an unsafe state 

 An unsafe state may not be a deadlock state 

 Some process may be able to complete 
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Safe vs. Unsafe 

 Safe  
 There is a way for all processes to finish executing 

without deadlocking 

 Goal 
 Guide the system down one of those paths 

successfully 
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Deadlocked 



How to guide the system down 

a safe path of execution 

 New function: is a given state safe? 

 When a resource allocation request 
arrives 
 Pretend that we approve the request 

 Call function: Would we then be safe?  

 If safe 
 Approve request 

 Otherwise 
 Block process until its request can be safely 

approved 
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Is a state safe? 

 What is a “state”?  
 For each resource, 

 Current amount available 

 Current amount allocated to each process 

 Future amount needed by each process 

Memory Mutex m 

Free 

P1 alloc 

P2 alloc 

P1 need 

P2 need 
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Is a state safe? 

 Safe 
 There is an execution order that can finish 

 Pessimistic assumption 
 Processes never release resources until 

they’re done 
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Is a state safe? 

 Safe 
 There is an execution order that can finish 

 
 P1 can finish using what it has plus what’s 

free 

 P2 can finish using what it has plus what’s 
free, plus what P1 will release when it 
finishes 

 P3 can finish using what it has, plus what’s 
free,  plus what P1 and P2 will release when 
they finish 

 ... 
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Is a state safe? 

 Search for an order P1, P2, P3, ... such that: 
 P1’s max resource needs ≤  what it has +  

     what’s free 

 P2’s max resource needs ≤  what it has +  

     what’s free +  
     what P1 will release  

     when it finishes 

 P3’s max resource needs ≤  what it has +  

     what’s free +  
     what P1 and P2 will  

     release when they finish 
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How do we figure that out?  

 Try all orderings? 

How many orderings do we need to find? 



Inspiration... 
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Playing pickup sticks 

with processes 

 Pick up  
 Find a stick on top 

 = Find a process that can 
finish with what it has plus 
what’s free 

 Remove stick 

 = Process releases its 
resources 

 Repeat  
 Until all processes have 

finished  
 Answer: safe 

 Or we get stuck  
 Answer: unsafe 
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Try it: is this state safe? 

P2 alloc 

Memory Mutex M 

Free 

P2 need 

P1 alloc 

P1 need 
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Which 

process can 

go first? 



Example 2: Is this state safe? 

P2 alloc 

Memory 

Free 

P2 need 

P1 alloc 

P1 need 

P3 alloc 

P3 need 
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Can P1 go first? 

Can P2 go first? 

Can P3 go first? 



How to guide the system down 

a safe path of execution 

 New function: is a given state safe? 

 When a resource allocation request 
arrives 
 Pretend that we approve the request 

 Call function: Would we then be safe?  

 If safe 
 Approve request 

 Otherwise 
 Block process until its request can be safely 

approved 
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Banker’s 

Algorithm 



Banker’s Algorithm 

 Dijkstra, 1965 

 Each customer tells banker the maximum 

number of resources it needs, before it 

starts  

 Customer borrows resources from banker 

 Customer returns resources to banker   

 Banker only lends resources if the system 

will stay in a safe state after the loan  

 Customer may have to wait  
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Banker’s Algorithm: Take 1 

For each request 

 If approved, 
would we still 
be safe? 

 If yes 
 Approve 

 If no 
 Block 
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P2 alloc 

Memory 

Free 

P2 need 

P1 alloc 

P1 need 

Disk 



Banker’s Algorithm: Take 2 

mutex m1, m2; 

int x, y; 

 

while (1) { 

  lock(m1);  

  x++;  

  unlock(m1); 

   

  lock(m2);  

  y++;  

  unlock(m2); 

} 

m1 

Free 

P2 alloc 

P2 need 

P1 alloc 

P1 need 

m2 
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Safe 

Unsafe 

Deadlock

ed 

Banker’s algorithm example 2 
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 Given 
 n resource types 

 P processes 

 p.Max[1…n] 

 Maximum number of 
resource i needed by p 

 p.Alloc[i]  
 Number of instances of 

resource i held by p  

 <= p.Max[i] 

 Avail [1…n]  

 Current number of available 
resources of each type 

 p.Need[i] = p.MAX[i] 
- p.Alloc[i] 

 

 Algorithm: 
 

while (there exists a p in P such 
that {for all i (p.Need[i] <= 
Available[i] )}) {  

 

 for (all i) { 

  Avail [i] += p.Alloc[i]; 

  P = P - p; 

 } 

} 

 

 If P is empty then system is safe 
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Formalized Banker’s Algorithm 
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Current Allocation 

Can P1 request (A:1 B:0 C:2) ? 

Pr Alloc Max Need Total 

A B C A B C A B C A B C 

P0 0 1 0 7 5 3 7 4 3 10 5 5 

P1 2 0 0 3 2 2 1 2 2 Available 

P2 3 0 0 9 0 2 6 0 2 A B C 

P3 2 1 1 2 2 2 0 1 1 3 3 2 

P4 0 0 2 4 3 3 4 3 1 
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New Allocation 

Can P0 request (A:0 B:2 C:0) ? 

Pr Alloc Max Need Total 

A B C A B C A B C A B C 

P0 0 1 0 7 5 3 7 4 3 10 5 5 

P1 3 0 2 3 2 2 0 2 0 Available 

P2 3 0 0 9 0 2 6 0 2 A B C 

P3 2 1 1 2 2 2 0 1 1 2 3 0 

P4 0 0 2 4 3 3 4 3 1 
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Outcome 

 P0’s request for 2 Bs  

 Cannot be granted because  
 Would prevent any other process from 

completing if they need their maximum claim 

 Just Because It’s Unsafe Doesn’t mean it 
will always deadlock 

 P0 could have been allocated 2 Bs and a 
deadlock might not have occurred if: 
 P2  didn’t use its maximum resources but 

finished using the resources it had 
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Concluding notes 

 In general, deadlock detection or avoidance is 

expensive 

 Must evaluate cost and frequency of deadlock 

against costs of detection or avoidance 

 Deadlock avoidance and recovery may cause 

indefinite postponement  

 Unix, Windows use Ostrich Algorithm (do nothing) 

 Typical apps use deadlock prevention (order locks) 

 Transaction systems (e.g., credit card systems) 

need to use deadlock 

detection/recovery/avoidance/prevention (why?) 
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