Copyright ©: University of lllinois CS 241 Staff

Addressing Deadlock

Prevention
o Design the system so that deadlock is impossible

Detection & Recovery

o Check for deadlock (periodically or sporadically) and
identify and which processes and resources involved

o Recover by killing one of the deadlocked processes and
releasing its resources

Avoidance

o Construct a model of system states, then choose a
strategy that, when resources are assigned to processes,
will not allow the system to go to a deadlock state

Manual intervention
o Have the operator reboot the machine if it seems too slow

Copyright ©: University of lllinois CS 241 Staff 2]

Deadlock Avoidance

Deadlock detection

o Assumes all resources are requested at start
time

Realistic scenarios

o Resources are requested incrementally

Deadlock Avoidance: Basic idea
o Try to see the worst that could happen

o Do not grant an incremental resource request to
a process Iif this allocation might lead to
deadlock

o Conservative/pessimistic approach

Copyright ©: University of lllinois CS 241 Staff

Deadlock Avoidance

Assume OS knows

o Number of available instances of each resource
Mutex: a resource with one instance available

Semaphore: a resource with possibly multiple “instances”
available

o For each process
Current amount of each resource it owns

Maximum amount of each resource it might ever need
O For a mutex this means: Will the process ever lock the mutex?

Assume processes are independent

o If one blocks, others can finish if they have enough
resources

Copyright ©: University of lllinois CS 241 Staff

Deadlock and Resources

Single instance of each resource
o Find cycle in resource allocation graph

Multiple instance of each resource

o Process can request any number of
Instances for a given resource

May only use some of them

Copyright ©: University of lllinois CS 241 Staff

Deadlock Avoidance:
Safe vs. Unsafe

Approach

o Define a model of system states (SAFE, UNSAFE)

o Choose a strategy that guarantees that the system will not
go to a deadlock state

Safe

o Guarantee

There is some scheduling order in which every process can
run to completion even if all of them suddenly and
simultaneously request their maximum number of resources

o From a safe state
The system can guarantee that all processes will finish

Copyright ©: University of lllinois CS 241 Staff

Deadlock Avoidance:
Safe vs. Unsafe

Approach

o Define a model of system states (SAFE, UNSAFE)

o Choose a strategy that guarantees that the system will not
go to a deadlock state

Unsafe state: no such guarantee

o A deadlock state is an unsafe state

o An unsafe state may not be a deadlock state
o Some process may be able to complete

Copyright ©: University of lllinois CS 241 Staff

Safe vs. Unsafe

Safe

o There is a way for all processes to finish executing
without deadlocking

Goal

o Guide the system down one of those paths
successfully

Unsafe

Deadlocked

Copyright ©: University of lllinois CS 241 Staff

How to guide the system down
[a safe path of execution

New function: is a given state safe?

When a resource allocation request
arrives

o Pretend that we approve the request
Call function: Would we then be safe?

o If safe
Approve request

o Otherwise

Block process until its request can be safely
approved

Copyright ©: University of lllinois CS 241 Staff

|Ss a state safe?

What is a “state”?

o For each resource,
Current amount available
Current amount allocated to each process
Future amount needed by each process

Memory Mutex m
Free BE
P1 alloc
P2 alloc

Plneed [N
P2 need

Copyright ©: University of lllinois CS 241 Staff

|Ss a state safe?

Safe
o There Is an execution order that can finish
Pessimistic assumption

o Processes never release resources until
they're done

Copyright ©: University of lllinois CS 241 Staff

[Is a state safe?

Safe

O

There i1s an execution order that can finish

P1 can finish using what it has plus what's
free

P2 can finish using what it has plus what's
free, plus what P1 will release when it
finishes

P3 can finish using what it has, plus what'’s
free, plus what P1 and P2 will release when
they finish

Copyright ©: University of lllinois CS 241 Staff 12]

|Ss a state safe?

Search for an order P1, P2, P3, ... such that:

o P1’s max resource needs < what it has +
what’s free
o P2’s max resource needs < what it has +

what’s free +
what P1 will release

when it finishes

o P3’s max resource needs < what it has +

what'’s free +
what P1 and p2 will

How do we figure that out? .
J release when they finish

Try all orderings?
How many orderings do we need to find?

Copyright ©: University of lllinois CS 241 Staff

Inspiration...

Copyright ©: University of lllinois CS 241 Staff

Playing pickup sticks
with processes

= Pick up
o Find a stick on top

= Find a process that can
finish with what it has plus
what's free

o Remove stick
= Process releases its

resources -
= Repeat
o Until all processes have
finished

= Answer: safe

o Or we get stuck
= Answer: unsafe

Copyright ©: University of lllinois CS 241 Staff

[Try It: IS this state safe?

Memory Mutex M
Free BE
P1 alloc
P2 alloc Which

process can
P1 need go first?
P2need I

Copyright ©: University of lllinois CS 241 Staff

[Example 2: Is this state safe?

Memory

Free ...

Can P1 go first?

=mmm) P1 alloc
Can P2 go first?

= P2 alloc
Can P3 go first?

=) P3 glloC

Pineed [ININIRE
P2need INIRIEE
P3 need ..

Copyright ©: University of lllinois CS 241 Staff

How to guide the system down
a safe path of execution

New function: is a given state safe?

When a resource allocation request
arrives

o Pretend that we approve the request
Call function: Would we then be safe?

o If safe Banker’s
Approve request Algorithm
o Otherwise

Block process until its request can be safely
approved

Copyright ©: University of lllinois CS 241 Staff

Banker's Algorithm

Dijkstra, 1965

O

Each customer tells banker the maximum
number of resources it needs, before it
starts

Customer borrows resources from banker
Customer returns resources to banker

Banker only lends resources if the system
will stay in a safe state after the loan

Customer may have to wait

Copyright ©: University of lllinois CS 241 Staff

[Banker’s Algorithm: Take 1

For each request Memory Disk
If approved,

WOSI% we still Free

be safe?
If yes P1 alloc

Approve
S, P2 alloc

If nO

o Block
P1 need .. .
P2 need . ..

Copyright ©: University of lllinois CS 241 Staff

[Banker’s Algorithm: Take 2

ml m2
mutex ml, m2; Free . .

int x, y;

while (1) { P1 alloc
lock (ml) ; P2 alloc
xX++;
unlock (ml) ;
P1 need . .
Lock (m2) ; P2 need
HE B

unlock (m2) ;

Copyright ©: University of lllinois CS 241 Staff

[Banker’s algorithm example 2

@ Unsafe

Deadlock
ed

Copyright ©: University of lllinois CS 241 Staff

Formalized Banker's Algorithm

Given Algorithm:
O nresource types
o P processes while (there exists a p in P such

that {for all i (p.Need[i] <=

o p.Max[l.n] Available[i])}) {

Maximum number of
resource i needed by p

o p.Alloc[i] for (al_l i)_{ _
Number of instances of Avail [i] += p.Alloc[i];
resource i held by p P=P - p;
<= p.Max[i] }

o Avail [1..n]
Current number of available
resources of each type
© p.Need[i] = p.MAX[i] If P Is empty then system is safe
- p.Alloc[1i]

Copyright ©: University of lllinois CS 241 Staff 47]

Current Allocation

Pr Alloc Max Need Total

A|lB|C A|lB|C Al B|C Al B|C
POL0O 1|0 7153 71413 10| 5|5
PL1 210 |0 3122 1122 Available
P21 310 1|0 9102 60| 2 Al B|C
P31 2111 212 |2 0|11 3132
P41 0|0 |2 4133 41311

Can P1 request (A:1 B:0 C:2) ?

Copyright ©: University of lllinois CS 241 Staff

New Allocation

Pr Alloc Max Need Total

A|lB|C A|lB|C Al B|C Al B|C
POL0O 1|0 7153 71413 10| 5|5
PL1 3]0 |2 3122 0[2]|0 Available
P21 310 1|0 9102 60| 2 Al B|C
P31 2111 212 |2 0|11 21310
P41 0|0 |2 4133 41311

Can PO request (A:0 B:2 C:0) ?

Copyright ©: University of lllinois CS 241 Staff

Outcome

PO’s request for 2 Bs

o Cannot be granted because

Would prevent any other process from
completing if they need their maximum claim

Just Because It's Unsafe Doesn’t mean it
will always deadlock

o PO could have been allocated 2 Bs and a
deadlock might not have occurred if:

P2 didn’t use its maximum resources but
finished using the resources it had

Copyright ©: University of lllinois CS 241 Staff

Concluding notes

= In general, deadlock detection or avoidance is
expensive

= Must evaluate cost and frequency of deadlock
against costs of detection or avoidance

= Deadlock avoidance and recovery may cause
Indefinite postponement

= Unix, Windows use Ostrich Algorithm (do nothing)
= Typical apps use deadlock prevention (order locks)

= Transaction systems (e.d., credit card systems)
need to use deadlock
detection/recovery/avoidance/prevention (why?)

Copyright ©: University of lllinois CS 241 Staff

