
Deadlocks

Copyright ©: University of Illinois CS 241 Staff 1

 Addressing Deadlock

 Prevention
 Design the system so that deadlock is impossible

 Detection & Recovery
 Check for deadlock (periodically or sporadically) and

identify and which processes and resources involved

 Recover by killing one of the deadlocked processes and
releasing its resources

 Avoidance
 Construct a model of system states, then choose a

strategy that, when resources are assigned to processes,
will not allow the system to go to a deadlock state

 Manual intervention
 Have the operator reboot the machine if it seems too slow

Copyright ©: University of Illinois CS 241 Staff 2

Deadlock Avoidance

 Deadlock detection
 Assumes all resources are requested at start

time

 Realistic scenarios
 Resources are requested incrementally

 Deadlock Avoidance: Basic idea
 Try to see the worst that could happen

 Do not grant an incremental resource request to
a process if this allocation might lead to
deadlock

 Conservative/pessimistic approach

Copyright ©: University of Illinois CS 241 Staff 3

Deadlock Avoidance

 Assume OS knows

 Number of available instances of each resource

 Mutex: a resource with one instance available

 Semaphore: a resource with possibly multiple “instances”

available

 For each process

 Current amount of each resource it owns

 Maximum amount of each resource it might ever need

 For a mutex this means: Will the process ever lock the mutex?

 Assume processes are independent

 If one blocks, others can finish if they have enough

resources

Copyright ©: University of Illinois CS 241 Staff 4

Deadlock and Resources

 Single instance of each resource

 Find cycle in resource allocation graph

 Multiple instance of each resource

 Process can request any number of

instances for a given resource

 May only use some of them

Copyright ©: University of Illinois CS 241 Staff 5

Deadlock Avoidance:

Safe vs. Unsafe

 Approach

 Define a model of system states (SAFE, UNSAFE)

 Choose a strategy that guarantees that the system will not

go to a deadlock state

 Safe

 Guarantee

 There is some scheduling order in which every process can

run to completion even if all of them suddenly and

simultaneously request their maximum number of resources

 From a safe state

 The system can guarantee that all processes will finish

Copyright ©: University of Illinois CS 241 Staff 6

Deadlock Avoidance:

Safe vs. Unsafe

 Approach

 Define a model of system states (SAFE, UNSAFE)

 Choose a strategy that guarantees that the system will not

go to a deadlock state

 Unsafe state: no such guarantee

 A deadlock state is an unsafe state

 An unsafe state may not be a deadlock state

 Some process may be able to complete

Copyright ©: University of Illinois CS 241 Staff 7

Safe vs. Unsafe

 Safe
 There is a way for all processes to finish executing

without deadlocking

 Goal
 Guide the system down one of those paths

successfully

8 Copyright ©: University of Illinois CS 241 Staff

Safe

Unsafe

Deadlocked

How to guide the system down

a safe path of execution

 New function: is a given state safe?

 When a resource allocation request
arrives
 Pretend that we approve the request

 Call function: Would we then be safe?

 If safe
 Approve request

 Otherwise
 Block process until its request can be safely

approved

9 Copyright ©: University of Illinois CS 241 Staff

Is a state safe?

 What is a “state”?
 For each resource,

 Current amount available

 Current amount allocated to each process

 Future amount needed by each process

Memory Mutex m

Free

P1 alloc

P2 alloc

P1 need

P2 need

10 Copyright ©: University of Illinois CS 241 Staff

Is a state safe?

 Safe
 There is an execution order that can finish

 Pessimistic assumption
 Processes never release resources until

they’re done

11 Copyright ©: University of Illinois CS 241 Staff

Is a state safe?

 Safe
 There is an execution order that can finish

 P1 can finish using what it has plus what’s

free

 P2 can finish using what it has plus what’s
free, plus what P1 will release when it
finishes

 P3 can finish using what it has, plus what’s
free, plus what P1 and P2 will release when
they finish

 ...
12 Copyright ©: University of Illinois CS 241 Staff

Is a state safe?

 Search for an order P1, P2, P3, ... such that:
 P1’s max resource needs ≤ what it has +

 what’s free

 P2’s max resource needs ≤ what it has +

 what’s free +
 what P1 will release

 when it finishes

 P3’s max resource needs ≤ what it has +

 what’s free +
 what P1 and P2 will

 release when they finish

Copyright ©: University of Illinois CS 241 Staff 13

How do we figure that out?

 Try all orderings?

How many orderings do we need to find?

Inspiration...

14 Copyright ©: University of Illinois CS 241 Staff

Playing pickup sticks

with processes

 Pick up
 Find a stick on top

 = Find a process that can
finish with what it has plus
what’s free

 Remove stick

 = Process releases its
resources

 Repeat
 Until all processes have

finished
 Answer: safe

 Or we get stuck
 Answer: unsafe

15 Copyright ©: University of Illinois CS 241 Staff

Try it: is this state safe?

P2 alloc

Memory Mutex M

Free

P2 need

P1 alloc

P1 need

16 Copyright ©: University of Illinois CS 241 Staff

Which

process can

go first?

Example 2: Is this state safe?

P2 alloc

Memory

Free

P2 need

P1 alloc

P1 need

P3 alloc

P3 need

23 Copyright ©: University of Illinois CS 241 Staff

Can P1 go first?

Can P2 go first?

Can P3 go first?

How to guide the system down

a safe path of execution

 New function: is a given state safe?

 When a resource allocation request
arrives
 Pretend that we approve the request

 Call function: Would we then be safe?

 If safe
 Approve request

 Otherwise
 Block process until its request can be safely

approved

27 Copyright ©: University of Illinois CS 241 Staff

Banker’s

Algorithm

Banker’s Algorithm

 Dijkstra, 1965

 Each customer tells banker the maximum

number of resources it needs, before it

starts

 Customer borrows resources from banker

 Customer returns resources to banker

 Banker only lends resources if the system

will stay in a safe state after the loan

 Customer may have to wait

28 Copyright ©: University of Illinois CS 241 Staff

Banker’s Algorithm: Take 1

For each request

 If approved,
would we still
be safe?

 If yes
 Approve

 If no
 Block

Copyright ©: University of Illinois CS 241 Staff 29

P2 alloc

Memory

Free

P2 need

P1 alloc

P1 need

Disk

Banker’s Algorithm: Take 2

mutex m1, m2;

int x, y;

while (1) {

 lock(m1);

 x++;

 unlock(m1);

 lock(m2);

 y++;

 unlock(m2);

}

m1

Free

P2 alloc

P2 need

P1 alloc

P1 need

m2

42 Copyright ©: University of Illinois CS 241 Staff

Safe

Unsafe

Deadlock

ed

Banker’s algorithm example 2

46 Copyright ©: University of Illinois CS 241 Staff

 Given
 n resource types

 P processes

 p.Max[1…n]

 Maximum number of
resource i needed by p

 p.Alloc[i]
 Number of instances of

resource i held by p

 <= p.Max[i]

 Avail [1…n]

 Current number of available
resources of each type

 p.Need[i] = p.MAX[i]
- p.Alloc[i]

 Algorithm:

while (there exists a p in P such
that {for all i (p.Need[i] <=
Available[i])}) {

 for (all i) {

 Avail [i] += p.Alloc[i];

 P = P - p;

 }

}

 If P is empty then system is safe

47

Formalized Banker’s Algorithm

Copyright ©: University of Illinois CS 241 Staff

Current Allocation

Can P1 request (A:1 B:0 C:2) ?

Pr Alloc Max Need Total

A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 10 5 5

P1 2 0 0 3 2 2 1 2 2 Available

P2 3 0 0 9 0 2 6 0 2 A B C

P3 2 1 1 2 2 2 0 1 1 3 3 2

P4 0 0 2 4 3 3 4 3 1

48 Copyright ©: University of Illinois CS 241 Staff

New Allocation

Can P0 request (A:0 B:2 C:0) ?

Pr Alloc Max Need Total

A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 10 5 5

P1 3 0 2 3 2 2 0 2 0 Available

P2 3 0 0 9 0 2 6 0 2 A B C

P3 2 1 1 2 2 2 0 1 1 2 3 0

P4 0 0 2 4 3 3 4 3 1

65 Copyright ©: University of Illinois CS 241 Staff

Outcome

 P0’s request for 2 Bs

 Cannot be granted because
 Would prevent any other process from

completing if they need their maximum claim

 Just Because It’s Unsafe Doesn’t mean it
will always deadlock

 P0 could have been allocated 2 Bs and a
deadlock might not have occurred if:
 P2 didn’t use its maximum resources but

finished using the resources it had

Copyright ©: University of Illinois CS 241 Staff 69

Concluding notes

 In general, deadlock detection or avoidance is

expensive

 Must evaluate cost and frequency of deadlock

against costs of detection or avoidance

 Deadlock avoidance and recovery may cause

indefinite postponement

 Unix, Windows use Ostrich Algorithm (do nothing)

 Typical apps use deadlock prevention (order locks)

 Transaction systems (e.g., credit card systems)

need to use deadlock

detection/recovery/avoidance/prevention (why?)

70 Copyright ©: University of Illinois CS 241 Staff

