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Deadlock 
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Which way 

should I go? 



Deadlock 
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I can almost 

get across 

Oh no! I’m 

stuck! 

GRIDLOCK! 



Deadlock Definition 

 Deadlocked process  

 Waiting for an event that will never occur 

 Typically, but not necessarily, involves 

more than one process 

 A set of processes is deadlocked if each 

process in the set is waiting for an event that 

only another process in the set can cause 
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How can a single process deadlock itself? 



Deadlock: One-lane Bridge 

 Traffic only in one direction 

 Each section of a bridge can be viewed as a resource 
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What can happen? 



Deadlock: One-lane Bridge 

 Traffic only in one direction 

 Each section of a bridge can be viewed as a resource 

 Deadlock 
 Resolved if cars back up (preempt resources and rollback) 

 Several cars may have to be backed up 
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Deadlock: One-lane Bridge 

 Traffic only in one direction 

 Each section of a bridge can be viewed as a resource 

 Deadlock 
 Resolved if cars back up (preempt resources and rollback) 

 Several cars may have to be backed up 

 But, starvation is possible 
 e.g., if the rule is that Westbound cars always go first 

 Note  
 Most OSes do not prevent or deal with deadlocks 
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Deadlock: One-lane Bridge 

 Deadlock vs. Starvation 

 Starvation = Indefinitely postponed  

 Delayed repeatedly over a long period of time while 

the attention of the system is given to other processes 

 Logically, the process may proceed but the system 

never gives it the CPU 
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I always have to 

back up! 



 Addressing Deadlock 

 Prevention 
 Design the system so that deadlock is impossible 

 Detection & Recovery 
 Check for deadlock (periodically or sporadically) and 

identify and which processes and resources involved  

 Recover by killing one of the deadlocked processes and 
releasing its resources 

 Avoidance 
 Construct a model of system states, then choose a 

strategy that, when resources are assigned to processes, 
will not allow the system to go to a deadlock state 

 Manual intervention 
 Have the operator reboot the machine if it seems too slow 
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Necessary Conditions for 

Deadlock 

 Mutual exclusion 
 Processes claim exclusive control of the resources 

they require 

 Hold-and-wait (a.k.a. wait-for) condition 
 Processes hold resources already allocated to them 

while waiting for additional resources 

 No preemption condition 
 Resources cannot be removed from the processes 

holding them until used to completion 

 Circular wait condition 
 A circular chain of processes exists in which each 

process holds one or more resources that are 
requested by the next process in the chain  
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Dining Philosophers had it all 

 Mutual exclusion  
 Exclusive use of forks 

 Hold and wait condition 
 Hold 1 fork, wait for next 

 No preemption condition 
 Cannot force another to  

undo their hold 

 Circular wait condition 
 Each waits for next neighbor  

to put down fork 
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DEADLOCK! 

This is the best one to tackle 



 Nodes 

 Circle: Processes  

 Square: Resources  

 Arcs 

 From resource to process = resource 

assigned to process 

 From process to resource = process 

requests (and is waiting for) resource 

R1 

R2 P1 

P2 

Formalizing circular wait: 

Resource allocation graphs  
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P1 is 

using 

R1 

P2 

requested 

R2 



 Nodes 

 Circle: Processes  

 Square: Resources  

 

 Deadlock 

 Processes P1 and P2 are in deadlock 

over resources R1 and r2 

R1 R2 

P1 

P2 

P1 requests 

R2 

P2  

acquires R2 

P2  

requests R1 

P1 acquires 

R1 

Resource allocation graphs  
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Circular 

wait 



If we use the trivial broken 

“solution”... 

 
# define N 5 

 

void philosopher (int i) { 

   while (TRUE) { 

      think(); 

      take_fork(i); 

      take_fork((i+1)%N); 

      eat(); /* yummy */ 

      put_fork(i); 

      put_fork((i+1)%N); 

  } 

} 

Dining Philosophers 

resource allocation graph 

Copyright ©:  University of Illinois CS 241 Staff 14 



If we use the trivial broken 

“solution”... 

One node per philosopher  

One node per fork 

 Everyone tries to pick up left 

fork  

 Request edges 

Dining Philosophers 

resource allocation graph 
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P2 

P3 P4 

P5 

P1 

R1 R2 

R3 

R4 

R5 



If we use the trivial broken 

“solution”... 

One node per philosopher  

One node per fork 

 Everyone tries to pick up left 

fork  

 Everyone succeeds 

Dining Philosophers 

resource allocation graph 
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If we use the trivial broken 

“solution”... 

One node per philosopher  

One node per fork 

 Everyone tries to pick up left 

fork  

 Everyone succeeds 

 Assignment edges 

Dining Philosophers 

resource allocation graph 
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If we use the trivial broken 

“solution”... 

One node per philosopher  

One node per fork 

 Everyone tries to pick up left 

fork  

 Everyone succeeds 

 Everyone tries to pick up 

right fork  

 Request edges 

Dining Philosophers 

resource allocation graph 
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If we use the trivial broken 

“solution”... 

One node per philosopher  

One node per fork 

Everyone tries to pick up left 

fork  

 Everyone succeeds 

Everyone tries to pick up right 

fork  

 Cycle = deadlock 

Dining Philosophers 

resource allocation graph 
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DEADLOCK! 



Default Solution: Be an Ostrich 

 Approach 

 Do nothing! 

 Deadlocked processes stay stuck 

 Rationale 

 Keeps the common path faster and more 
reliable 

 Deadlock prevention, avoidance and 
detection/recovery are expensive 

 If deadlock is rare, is it worth the overhead? 
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Deadlock Prevention 

 Goal 1: devise resource allocation rules that make 

circular wait impossible 

 Resources include mutex locks, semaphores, pages of 

memory, ... 

 ...but you can think about just mutex locks for now 

 

 Goal 2: make sure useful behavior is still possible! 

 The rules will necessarily be conservative 

 Rule out some behavior that would not cause deadlock 

 But they shouldn’t be to be too conservative 

 We still need to get useful work done 
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Deadlock Prevention 

 Prevent any one of the 4 conditions 

 Mutual exclusion 

 Hold-and-wait 

 No preemption 

 Circular wait 
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Mutual Exclusion 

 Processes claim exclusive control of the 

resources they require 

 How to break it? 
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Mutual Exclusion 

 Processes claim exclusive control of the 

resources they require 

 How to break it? 

 Non-exclusive access only  

 Read-only access 

 Probably not an option for most scenarios 

 But be smart and try to use shared resources wisely 

 Battle won! 

 War lost 

 Very bad at Goal #2 
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Hold and Wait Condition 

 Processes hold resources already allocated 

to them while waiting for additional resources 

 How to break it? 
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Hold and Wait Condition 

 Processes hold resources already allocated 

to them while waiting for additional resources 

 How to break it? 
 All at once 

 Force a process to request all resources it needs at one time  

 Get all or nothing 

 Release and try again 
 If a process needs to acquire a new resource, it must first 

release all resources it holds, then reacquire all it needs 

 Both 
 Inefficient 

 Potential of starvation 
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Hold and Wait Condition 

 Processes hold resources already allocated 

to them while waiting for additional resources 

 How to break it? 

 Only one 

 Process can only have one resource locked  

 Result 

 No circular wait! 
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Hold and Wait Condition 

 Processes hold resources already allocated 

to them while waiting for additional resources 

 Result 

 No circular wait! 

 Very constraining (mediocre job on Goal #2) 

 Better than Rules #1 and #2, but... 

 Often need more than one resource 

 Hard to predict resource needs at the beginning 

 Releasing and re-requesting is inefficient, complicates 

programming, might lead to starvation 
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No Preemption Condition 

 Resources cannot be taken from processes 

holding them until used to completion 

 How to break it? 
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No Preemption Condition 

 Resources cannot be taken from processes 

holding them until used to completion 

 How to break it? 
 Let it all go 

 If a process holding some resources is denied a further 
request, that process must release its original 
resources 

 Inefficient! 

 Take it all away 
 If a process requests a resource that is held by 

another process, the OS may preempt the second 
process and force it to release its resources  

 Waste of CPU and other resources! 
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No Preemption Condition 

 Resources cannot be taken from processes 

holding them until used to completion 

 Result 
 Breaks circular wait 

 Because we don’t have to wait 

 Reasonable strategy sometimes 
 e.g. if resource is memory: “preempt” = page to disk 

 Not so convenient for synchronization resources 
 e.g., locks in multithreaded application 

 What if current owner is in the middle of a critical section 
updating pointers?  Data structures might be left in 
inconsistent state! 
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Circular Wait Condition 

 A circular chain of processes exists in which 

each process holds one or more resources 

that are requested by the next process in 

the chain 

 How to break it? 
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Circular Wait Condition 

 A circular chain of processes exists in which 

each process holds one or more resources 

that are requested by the next process in 

the chain 

 How to break it? 

 Guarantee no cycles 

 Allow processes to access resources only in 

increasing order of resource id 

 Not really fair or necessarily efficient … 
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Back to the trivial broken 

“solution”... 

 
# define N 5 

 

void philosopher (int i) { 

   while (TRUE) { 

      think(); 

      take_fork(i); 

      take_fork((i+1)%N); 

      eat(); /* yummy */ 

      put_fork(i); 

      put_fork((i+1)%N); 

  } 

} 

Dining Philosophers solution 

with numbered resources 
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Back to the trivial broken 

“solution”... 

 
# define N 5 

 

void philosopher (int i) { 

   while (TRUE) { 

      think(); 

      take_fork(i); 

      take_fork((i+1)%N); 

      eat(); /* yummy */ 

      put_fork(i); 

      put_fork((i+1)%N); 

  } 

} 

 

Dining Philosophers solution 

with numbered resources 
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Dining Philosophers solution 

with numbered resources 

Back to the trivial broken 

“solution”... 

 
# define N 5 

 

void philosopher (int i) { 

   while (TRUE) { 

      think(); 

      take_fork(i); 

      take_fork((i+1)%N); 

      eat(); /* yummy */ 

      put_fork(i); 

      put_fork((i+1)%N); 

  } 

} 
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Dining Philosophers solution 

with numbered resources 

Instead, number resources... 

First request lower numbered fork 

 
# define N 5 

 

void philosopher (int i) { 

   while (TRUE) { 

      think(); 

      take_fork(LOWER(i)); 

      take_fork(HIGHER(i)); 

      eat(); /* yummy */ 

      put_fork(LOWER(i)); 

      put_fork(HIGHER(i)); 

  } 

} 

 

1 

2 

3 

4 

5 
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Dining Philosophers solution 

with numbered resources 

Instead, number resources... 

Then request higher numbered fork 

 
# define N 5 

 

void philosopher (int i) { 

   while (TRUE) { 

      think(); 

      take_fork(LOWER(i)); 

      take_fork(HIGHER(i)); 

      eat(); /* yummy */ 

      put_fork(LOWER(i)); 

      put_fork(HIGHER(i)); 

  } 

} 

 

1 

2 

3 

4 

5 
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Dining Philosophers solution 

with numbered resources 

Instead, number resources... 

Then request higher numbered fork 

 
# define N 5 

 

void philosopher (int i) { 

   while (TRUE) { 

      think(); 

      take_fork(LOWER(i)); 

      take_fork(HIGHER(i)); 

      eat(); /* yummy */ 

      put_fork(LOWER(i)); 

      put_fork(HIGHER(i)); 

  } 

} 

 

1 

2 

3 

4 

5 
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Dining Philosophers solution 

with numbered resources 

Instead, number resources... 

One philosopher can eat! 

 
# define N 5 

 

void philosopher (int i) { 

   while (TRUE) { 

      think(); 

      take_fork(LOWER(i)); 

      take_fork(HIGHER(i)); 

      eat(); /* yummy */ 

      put_fork(LOWER(i)); 

      put_fork(HIGHER(i)); 

  } 

} 

 

1 

2 

3 

4 

5 
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 Without numbering 

Ordered resource requests 

prevent deadlock 

Cycle! 
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 With numbering 

Ordered resource requests 

prevent deadlock 

3 

4 

7 

8 

Contradiction:  
Must have requested 

3 first! 
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Proof by M.C. Escher 
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Are we always in trouble 

without ordering resources? 

 Not always 

 Ordered resource requests are sufficient 

to avoid deadlock, but not necessary 

 Convenient, but may be conservative 
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3 

4 

7 

8 



Q: What’s the rule of the road? 

 What’s the law? Does it resemble one of the rules 

we saw? 
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I can almost 

get across 
Drat! 



Deadlock Detection 

 Check to see if a deadlock has 

occurred! 

 Single resource per type 

 Can use wait-for graph 

 Check for cycles 

 How? 
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Wait for Graphs 

Resource 

Allocation Graph 

Corresponding Wait 

For Graph 
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Easier to find 
cycles on this 

graph 



 Get rid of the 

cycles in the wait 

for graph 

 How many cycles 

are there? 

Deadlock Recovery 
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 Options 

 Kill all deadlocked processes and release 
resources 

 Kill one deadlocked process at a time and 
release its resources 

 Steal one resource at a time 

 Rollback all or one of the processes to a 
checkpoint that occurred before they 
requested any resources  
 Difficult to prevent indefinite postponement 

Deadlock Recovery 
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Deadlock Recovery 
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Resource 

Allocation Graph 

Corresponding Wait 

For Graph 

Have to kill 
one more 



Deadlock Recovery 
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Resource 

Allocation Graph 

Corresponding Wait 

For Graph 

Only have 
to kill one 



Deadlock Recovery: Process 

Termination 

 How should the aborted process be chosen? 

 Process priority 

 Current computation time and time to completion 

 Amount of resources used by the process 

 Amount of resources needed by the process to 
complete 

 If this process is terminated, how many other 
processes will need to be terminated? 

 Is process interactive or batch? 
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Deadlock Recovery: Resource 

Preemption 

 Selecting a victim 
 Minimize cost 

 Rollback 
 Return to some safe state 

 Restart process for that state 

 Challenge: Starvation 
 Same process may always be picked as 

victim 

 Fix: Include number of rollbacks in cost 
factor 
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Deadlock Avoidance 

 Basic idea 

 Resource manager tries to see the worst 

case that could happen 

 It does not grant an incremental resource 

request to a process if this allocation 

might lead to deadlock 
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Deadlock Avoidance 

 Approach 

 Define a model of system states (SAFE, 
UNSAFE) 

 Choose a strategy that guarantees that the 
system will not go to a deadlock state 

 Multiple instance of each Resources 

 Requires the maximum number of each 
resource needed for each process 
 For each resource i, p.Max[i] = maximum 

number of instances of i that p can request 
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Safe vs. Unsafe 

 Safe 
 Guarantee 

 There is some scheduling order in which every process can run 
to completion even if all of them suddenly and simultaneously 
request their maximum number of resources  

 From a safe state 
 The system can guarantee that all processes will finish 

 Unsafe state: no such guarantee 
 A deadlock state is an unsafe state 

 An unsafe state may not be a deadlock state 

 Some process may be able to complete 

 Overall 
 a conservative/pessimistic approach 
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How to Compute Safety 

 Banker’s Algorithm (Dijkstra, 1965)  

 Each customer tells banker the maximum 
number of resources it needs, before it 
starts  

 Customer borrows resources from banker  

 Customer returns resources to banker   

 Banker only lends resources if the 
system will stay in a safe state after the 
loan  
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