
Deadlocks

Copyright ©: University of Illinois CS 241 Staff 1

Deadlock

2 Copyright ©: University of Illinois CS 241 Staff

Which way

should I go?

Deadlock

3 Copyright ©: University of Illinois CS 241 Staff

I can almost

get across

Oh no! I’m

stuck!

GRIDLOCK!

Deadlock Definition

 Deadlocked process

 Waiting for an event that will never occur

 Typically, but not necessarily, involves

more than one process

 A set of processes is deadlocked if each

process in the set is waiting for an event that

only another process in the set can cause

Copyright ©: University of Illinois CS 241 Staff 4

How can a single process deadlock itself?

Deadlock: One-lane Bridge

 Traffic only in one direction

 Each section of a bridge can be viewed as a resource

Copyright ©: University of Illinois CS 241 Staff 5

What can happen?

Deadlock: One-lane Bridge

 Traffic only in one direction

 Each section of a bridge can be viewed as a resource

 Deadlock
 Resolved if cars back up (preempt resources and rollback)

 Several cars may have to be backed up

Copyright ©: University of Illinois CS 241 Staff 6

Deadlock: One-lane Bridge

 Traffic only in one direction

 Each section of a bridge can be viewed as a resource

 Deadlock
 Resolved if cars back up (preempt resources and rollback)

 Several cars may have to be backed up

 But, starvation is possible
 e.g., if the rule is that Westbound cars always go first

 Note
 Most OSes do not prevent or deal with deadlocks

Copyright ©: University of Illinois CS 241 Staff 7

Deadlock: One-lane Bridge

 Deadlock vs. Starvation

 Starvation = Indefinitely postponed

 Delayed repeatedly over a long period of time while

the attention of the system is given to other processes

 Logically, the process may proceed but the system

never gives it the CPU

Copyright ©: University of Illinois CS 241 Staff 8

I always have to

back up!

 Addressing Deadlock

 Prevention
 Design the system so that deadlock is impossible

 Detection & Recovery
 Check for deadlock (periodically or sporadically) and

identify and which processes and resources involved

 Recover by killing one of the deadlocked processes and
releasing its resources

 Avoidance
 Construct a model of system states, then choose a

strategy that, when resources are assigned to processes,
will not allow the system to go to a deadlock state

 Manual intervention
 Have the operator reboot the machine if it seems too slow

Copyright ©: University of Illinois CS 241 Staff 9

Necessary Conditions for

Deadlock

 Mutual exclusion
 Processes claim exclusive control of the resources

they require

 Hold-and-wait (a.k.a. wait-for) condition
 Processes hold resources already allocated to them

while waiting for additional resources

 No preemption condition
 Resources cannot be removed from the processes

holding them until used to completion

 Circular wait condition
 A circular chain of processes exists in which each

process holds one or more resources that are
requested by the next process in the chain

Copyright ©: University of Illinois CS 241 Staff 10

Dining Philosophers had it all

 Mutual exclusion
 Exclusive use of forks

 Hold and wait condition
 Hold 1 fork, wait for next

 No preemption condition
 Cannot force another to

undo their hold

 Circular wait condition
 Each waits for next neighbor

to put down fork

Copyright ©: University of Illinois CS 241 Staff 11

DEADLOCK!

This is the best one to tackle

 Nodes

 Circle: Processes

 Square: Resources

 Arcs

 From resource to process = resource

assigned to process

 From process to resource = process

requests (and is waiting for) resource

R1

R2 P1

P2

Formalizing circular wait:

Resource allocation graphs

12 Copyright ©: University of Illinois CS 241 Staff

P1 is

using

R1

P2

requested

R2

 Nodes

 Circle: Processes

 Square: Resources

 Deadlock

 Processes P1 and P2 are in deadlock

over resources R1 and r2

R1 R2

P1

P2

P1 requests

R2

P2

acquires R2

P2

requests R1

P1 acquires

R1

Resource allocation graphs

13 Copyright ©: University of Illinois CS 241 Staff

Circular

wait

If we use the trivial broken

“solution”...

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(i);

 take_fork((i+1)%N);

 eat(); /* yummy */

 put_fork(i);

 put_fork((i+1)%N);

 }

}

Dining Philosophers

resource allocation graph

Copyright ©: University of Illinois CS 241 Staff 14

If we use the trivial broken

“solution”...

One node per philosopher

One node per fork

 Everyone tries to pick up left

fork

 Request edges

Dining Philosophers

resource allocation graph

Copyright ©: University of Illinois CS 241 Staff 15

P2

P3 P4

P5

P1

R1 R2

R3

R4

R5

If we use the trivial broken

“solution”...

One node per philosopher

One node per fork

 Everyone tries to pick up left

fork

 Everyone succeeds

Dining Philosophers

resource allocation graph

16 Copyright ©: University of Illinois CS 241 Staff

If we use the trivial broken

“solution”...

One node per philosopher

One node per fork

 Everyone tries to pick up left

fork

 Everyone succeeds

 Assignment edges

Dining Philosophers

resource allocation graph

17 Copyright ©: University of Illinois CS 241 Staff

If we use the trivial broken

“solution”...

One node per philosopher

One node per fork

 Everyone tries to pick up left

fork

 Everyone succeeds

 Everyone tries to pick up

right fork

 Request edges

Dining Philosophers

resource allocation graph

18 Copyright ©: University of Illinois CS 241 Staff

If we use the trivial broken

“solution”...

One node per philosopher

One node per fork

Everyone tries to pick up left

fork

 Everyone succeeds

Everyone tries to pick up right

fork

 Cycle = deadlock

Dining Philosophers

resource allocation graph

19 Copyright ©: University of Illinois CS 241 Staff

DEADLOCK!

Default Solution: Be an Ostrich

 Approach

 Do nothing!

 Deadlocked processes stay stuck

 Rationale

 Keeps the common path faster and more
reliable

 Deadlock prevention, avoidance and
detection/recovery are expensive

 If deadlock is rare, is it worth the overhead?

21 Copyright ©: University of Illinois CS 241 Staff

Deadlock Prevention

 Goal 1: devise resource allocation rules that make

circular wait impossible

 Resources include mutex locks, semaphores, pages of

memory, ...

 ...but you can think about just mutex locks for now

 Goal 2: make sure useful behavior is still possible!

 The rules will necessarily be conservative

 Rule out some behavior that would not cause deadlock

 But they shouldn’t be to be too conservative

 We still need to get useful work done

Copyright ©: University of Illinois CS 241 Staff 22

Deadlock Prevention

 Prevent any one of the 4 conditions

 Mutual exclusion

 Hold-and-wait

 No preemption

 Circular wait

23 Copyright ©: University of Illinois CS 241 Staff

Mutual Exclusion

 Processes claim exclusive control of the

resources they require

 How to break it?

24 Copyright ©: University of Illinois CS 241 Staff

Mutual Exclusion

 Processes claim exclusive control of the

resources they require

 How to break it?

 Non-exclusive access only

 Read-only access

 Probably not an option for most scenarios

 But be smart and try to use shared resources wisely

 Battle won!

 War lost

 Very bad at Goal #2

25 Copyright ©: University of Illinois CS 241 Staff

Hold and Wait Condition

 Processes hold resources already allocated

to them while waiting for additional resources

 How to break it?

Copyright ©: University of Illinois CS 241 Staff 26

Hold and Wait Condition

 Processes hold resources already allocated

to them while waiting for additional resources

 How to break it?
 All at once

 Force a process to request all resources it needs at one time

 Get all or nothing

 Release and try again
 If a process needs to acquire a new resource, it must first

release all resources it holds, then reacquire all it needs

 Both
 Inefficient

 Potential of starvation

27 Copyright ©: University of Illinois CS 241 Staff

Hold and Wait Condition

 Processes hold resources already allocated

to them while waiting for additional resources

 How to break it?

 Only one

 Process can only have one resource locked

 Result

 No circular wait!

Copyright ©: University of Illinois CS 241 Staff 28

Hold and Wait Condition

 Processes hold resources already allocated

to them while waiting for additional resources

 Result

 No circular wait!

 Very constraining (mediocre job on Goal #2)

 Better than Rules #1 and #2, but...

 Often need more than one resource

 Hard to predict resource needs at the beginning

 Releasing and re-requesting is inefficient, complicates

programming, might lead to starvation

Copyright ©: University of Illinois CS 241 Staff 29

No Preemption Condition

 Resources cannot be taken from processes

holding them until used to completion

 How to break it?

30 Copyright ©: University of Illinois CS 241 Staff

No Preemption Condition

 Resources cannot be taken from processes

holding them until used to completion

 How to break it?
 Let it all go

 If a process holding some resources is denied a further
request, that process must release its original
resources

 Inefficient!

 Take it all away
 If a process requests a resource that is held by

another process, the OS may preempt the second
process and force it to release its resources

 Waste of CPU and other resources!

31 Copyright ©: University of Illinois CS 241 Staff

No Preemption Condition

 Resources cannot be taken from processes

holding them until used to completion

 Result
 Breaks circular wait

 Because we don’t have to wait

 Reasonable strategy sometimes
 e.g. if resource is memory: “preempt” = page to disk

 Not so convenient for synchronization resources
 e.g., locks in multithreaded application

 What if current owner is in the middle of a critical section
updating pointers? Data structures might be left in
inconsistent state!

32 Copyright ©: University of Illinois CS 241 Staff

Circular Wait Condition

 A circular chain of processes exists in which

each process holds one or more resources

that are requested by the next process in

the chain

 How to break it?

33 Copyright ©: University of Illinois CS 241 Staff

Circular Wait Condition

 A circular chain of processes exists in which

each process holds one or more resources

that are requested by the next process in

the chain

 How to break it?

 Guarantee no cycles

 Allow processes to access resources only in

increasing order of resource id

 Not really fair or necessarily efficient …

34 Copyright ©: University of Illinois CS 241 Staff

Back to the trivial broken

“solution”...

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(i);

 take_fork((i+1)%N);

 eat(); /* yummy */

 put_fork(i);

 put_fork((i+1)%N);

 }

}

Dining Philosophers solution

with numbered resources

35 Copyright ©: University of Illinois CS 241 Staff

Back to the trivial broken

“solution”...

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(i);

 take_fork((i+1)%N);

 eat(); /* yummy */

 put_fork(i);

 put_fork((i+1)%N);

 }

}

Dining Philosophers solution

with numbered resources

36 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers solution

with numbered resources

Back to the trivial broken

“solution”...

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(i);

 take_fork((i+1)%N);

 eat(); /* yummy */

 put_fork(i);

 put_fork((i+1)%N);

 }

}

37 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers solution

with numbered resources

Instead, number resources...

First request lower numbered fork

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(LOWER(i));

 take_fork(HIGHER(i));

 eat(); /* yummy */

 put_fork(LOWER(i));

 put_fork(HIGHER(i));

 }

}

1

2

3

4

5

38 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers solution

with numbered resources

Instead, number resources...

Then request higher numbered fork

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(LOWER(i));

 take_fork(HIGHER(i));

 eat(); /* yummy */

 put_fork(LOWER(i));

 put_fork(HIGHER(i));

 }

}

1

2

3

4

5

39 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers solution

with numbered resources

Instead, number resources...

Then request higher numbered fork

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(LOWER(i));

 take_fork(HIGHER(i));

 eat(); /* yummy */

 put_fork(LOWER(i));

 put_fork(HIGHER(i));

 }

}

1

2

3

4

5

40 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers solution

with numbered resources

Instead, number resources...

One philosopher can eat!

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(LOWER(i));

 take_fork(HIGHER(i));

 eat(); /* yummy */

 put_fork(LOWER(i));

 put_fork(HIGHER(i));

 }

}

1

2

3

4

5

41 Copyright ©: University of Illinois CS 241 Staff

 Without numbering

Ordered resource requests

prevent deadlock

Cycle!

42 Copyright ©: University of Illinois CS 241 Staff

 With numbering

Ordered resource requests

prevent deadlock

3

4

7

8

Contradiction:
Must have requested

3 first!

43 Copyright ©: University of Illinois CS 241 Staff

Proof by M.C. Escher

Copyright ©: University of Illinois CS 241 Staff 44

Copyright ©: University of Illinois CS 241 Staff 45

Are we always in trouble

without ordering resources?

 Not always

 Ordered resource requests are sufficient

to avoid deadlock, but not necessary

 Convenient, but may be conservative

46 Copyright ©: University of Illinois CS 241 Staff

3

4

7

8

Q: What’s the rule of the road?

 What’s the law? Does it resemble one of the rules

we saw?

Copyright ©: University of Illinois CS 241 Staff 47

I can almost

get across
Drat!

Deadlock Detection

 Check to see if a deadlock has

occurred!

 Single resource per type

 Can use wait-for graph

 Check for cycles

 How?

48 Copyright ©: University of Illinois CS 241 Staff

Wait for Graphs

Resource

Allocation Graph

Corresponding Wait

For Graph

49 Copyright ©: University of Illinois CS 241 Staff

Easier to find
cycles on this

graph

 Get rid of the

cycles in the wait

for graph

 How many cycles

are there?

Deadlock Recovery

50 Copyright ©: University of Illinois CS 241 Staff

 Options

 Kill all deadlocked processes and release
resources

 Kill one deadlocked process at a time and
release its resources

 Steal one resource at a time

 Rollback all or one of the processes to a
checkpoint that occurred before they
requested any resources
 Difficult to prevent indefinite postponement

Deadlock Recovery

51 Copyright ©: University of Illinois CS 241 Staff

Deadlock Recovery

Copyright ©: University of Illinois CS 241 Staff 52

Resource

Allocation Graph

Corresponding Wait

For Graph

Have to kill
one more

Deadlock Recovery

Copyright ©: University of Illinois CS 241 Staff 53

Resource

Allocation Graph

Corresponding Wait

For Graph

Only have
to kill one

Deadlock Recovery: Process

Termination

 How should the aborted process be chosen?

 Process priority

 Current computation time and time to completion

 Amount of resources used by the process

 Amount of resources needed by the process to
complete

 If this process is terminated, how many other
processes will need to be terminated?

 Is process interactive or batch?

54 Copyright ©: University of Illinois CS 241 Staff

Deadlock Recovery: Resource

Preemption

 Selecting a victim
 Minimize cost

 Rollback
 Return to some safe state

 Restart process for that state

 Challenge: Starvation
 Same process may always be picked as

victim

 Fix: Include number of rollbacks in cost
factor

55 Copyright ©: University of Illinois CS 241 Staff

Deadlock Avoidance

 Basic idea

 Resource manager tries to see the worst

case that could happen

 It does not grant an incremental resource

request to a process if this allocation

might lead to deadlock

56 Copyright ©: University of Illinois CS 241 Staff

Deadlock Avoidance

 Approach

 Define a model of system states (SAFE,
UNSAFE)

 Choose a strategy that guarantees that the
system will not go to a deadlock state

 Multiple instance of each Resources

 Requires the maximum number of each
resource needed for each process
 For each resource i, p.Max[i] = maximum

number of instances of i that p can request

57 Copyright ©: University of Illinois CS 241 Staff

Safe vs. Unsafe

 Safe
 Guarantee

 There is some scheduling order in which every process can run
to completion even if all of them suddenly and simultaneously
request their maximum number of resources

 From a safe state
 The system can guarantee that all processes will finish

 Unsafe state: no such guarantee
 A deadlock state is an unsafe state

 An unsafe state may not be a deadlock state

 Some process may be able to complete

 Overall
 a conservative/pessimistic approach

58 Copyright ©: University of Illinois CS 241 Staff

How to Compute Safety

 Banker’s Algorithm (Dijkstra, 1965)

 Each customer tells banker the maximum
number of resources it needs, before it
starts

 Customer borrows resources from banker

 Customer returns resources to banker

 Banker only lends resources if the
system will stay in a safe state after the
loan

59 Copyright ©: University of Illinois CS 241 Staff

