
Classical Synchronization

Problems

1 Copyright ©: University of Illinois CS 241 Staff

Reader-Writer Problem

 Readers read data

 Writers write data

 Rules
 Multiple readers may read the data simultaneously

 Only one writer can write the data at any time

 A reader and a writer cannot access data simultaneously

 Locking table
 Whether any two can be in the critical section

simultaneously

Copyright ©: University of Illinois CS 241 Staff 2

Reader Writer

Reader OK No

Writer No No

 Customers
 N chairs for waiting

 Barber
 Can cut one customer’s

hair at any time

 No waiting customer =>
barber sleeps

 Customer enters
 If all waiting chairs full,

customer leaves

 If barber asleep, wake up
barber and get hair cut

 Otherwise (barber is
busy), wait in a chair

3 Copyright ©: University of Illinois CS 241 Staff

Sleeping Barber

barber {

 while (TRUE) {

 semWait(customers);

 mutexLock(lock);

 waiting = waiting–1;

 semSignal(barbers);

 mutexUnlock(lock);

 cutHair();

 }

}

Sleeping Barber

customer {

 mutexLock(lock);

 if (waiting < chairs) {

 waiting = waiting+1;

 semSignal(customers);

 mutexUnlock(lock);

 semWait(barbers);

 getHaircut();

 else {

 mutexUnlock(lock);

}

#define CHAIRS 5

semaphore customers, barbers;

mutex lock

int waiting

Sleep if no

customers

One barber

is ready to

cut hair

If no free

chairs,

leave

Wake up

barbers

Wait for

barber

4 Copyright ©: University of Illinois CS 241 Staff

barber {

 while (TRUE) {

 semWait(customers);

 mutexLock(lock);

 waiting = waiting–1;

 semSignal(barbers);

 mutexUnlock(lock);

 cutHair();

 }

}

Sleeping Barber

customer {

 mutexLock(lock);

 if (waiting < chairs) {

 waiting = waiting+1;

 semSignal(customers);

 mutexUnlock(lock);

 semWait(barbers);

 getHaircut();

 else {

 mutexUnlock(lock);

}

#define CHAIRS 5

semaphore customers, barbers;

mutex lock

int waiting

What is the shared data?
What part protects the shared data?

5 Copyright ©: University of Illinois CS 241 Staff

barber {

 while (TRUE) {

 semWait(customers);

 mutexLock(lock);

 waiting = waiting–1;

 semSignal(barbers);

 mutexUnlock(lock);

 cutHair();

 }

}

Sleeping Barber

customer {

 mutexLock(lock);

 if (waiting < chairs) {

 waiting = waiting+1;

 semSignal(customers);

 mutexUnlock(lock);

 semWait(barbers);

 getHaircut();

 else {

 mutexUnlock(lock);

}

#define CHAIRS 5

semaphore customers, barbers;

mutex lock

int waiting

What guarantees that not too many
customer are waiting?

7 Copyright ©: University of Illinois CS 241 Staff

barber {

 while (TRUE) {

 semWait(customers);

 mutexLock(lock);

 waiting = waiting–1;

 semSignal(barbers);

 mutexUnlock(lock);

 cutHair();

 }

}

Sleeping Barber

customer {

 mutexLock(lock);

 if (waiting < chairs) {

 waiting = waiting+1;

 semSignal(customers);

 mutexUnlock(lock);

 semWait(barbers);

 getHaircut();

 else {

 mutexUnlock(lock);

}

#define CHAIRS 5

semaphore customers, barbers;

mutex lock

int waiting

What guarantees that there is
only one customer in the chair?

9 Copyright ©: University of Illinois CS 241 Staff

barber {

 while (TRUE) {

 semWait(customers);

 mutexLock(lock);

 waiting = waiting–1;

 semSignal(barbers);

 mutexUnlock(lock);

 cutHair();

 }

}

Sleeping Barber

customer {

 mutexLock(lock);

 if (waiting < chairs) {

 waiting = waiting+1;

 semSignal(customers);

 mutexUnlock(lock);

 semWait(barbers);

 getHaircut();

 else {

 mutexUnlock(lock);

}

#define CHAIRS 5

semaphore customers, barbers;

mutex lock

int waiting

What guarantees that the barber
doesn’t miss a customer?

11 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers

 N philosophers and N forks

 Philosophers eat/think

 Eating needs 2 forks

 Pick up one fork at a time

13 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers

14 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers: Take 1

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(i);

 take_fork((i+1)%N);

 eat(); /* yummy */

 put_fork(i);

 put_fork((i+1)%N);

 }

}

Copyright ©: University of Illinois CS 241 Staff 15

Does this work?

What is deadlock?

 Necessary and sufficient conditions for
deadlock

 Mutual exclusion

 Hold and wait

 No preemption

 Circular wait

 Which properties does our solution to
dining philosophers have?

17 Copyright ©: University of Illinois CS 241 Staff

Conditions for Deadlock

 Mutual exclusion
 Exclusive use of chopsticks

 Hold and wait
 Hold 1 chopstick, wait for next

 No preemption
 Cannot force another to release held

resource

 Circular wait
 Each waits for next neighbor to put down

chopstick

18 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers: Take 1

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(i);

 take_fork((i+1)%N);

 eat(); /* yummy */

 put_fork(i);

 put_fork((i+1)%N);

 }

}

Copyright ©: University of Illinois CS 241 Staff 19

How can we fix this?

Dining Philosophers: Take 1

define N 5

void philosopher (int i) {

 while (TRUE) {

 think();

 take_fork(i);

 take_fork((i+1)%N);

 eat(); /* yummy */

 put_fork(i);

 put_fork((i+1)%N);

 }

}

Copyright ©: University of Illinois CS 241 Staff 20

take_forks(i);

put_forks(i);

How can we fix this?

#define N 5

#define THINKING 0

#define HUNGRY 1

#define EATING 2

#define LEFT (i – 1)%N

#define RIGHT (i + 1)%N

int state[N];

mutex lock;

semaphore sem[N];

void philosopher (int i) {

 while (TRUE) {

 think();

 take_forks(i);

 eat(); /* yummy */

 put_forks(i);

 }

}

Dining Philosophers: Take 2

21 Copyright ©: University of Illinois CS 241 Staff

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

22 Copyright ©: University of Illinois CS 241 Staff

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

23 Copyright ©: University of Illinois CS 241 Staff

i

Try to get

2 forks

Block if forks

not acquired

Get both forks iff

neither neighbor

is hungry

Signal

myself

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

24 Copyright ©: University of Illinois CS 241 Staff

LEFT

i

RIGHT

Get both forks iff

neither neighbor

is hungry

Signal

waiting

philosopher

Let others

get a turn

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

25 Copyright ©: University of Illinois CS 241 Staff

Try to get

2 forks

Block if forks

not acquired

Get both forks iff

neither neighbor

is hungry

Signal

waiting

philosopher

Let others

get a turn

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

26 Copyright ©: University of Illinois CS 241 Staff

How do we guarantee that only one
philosopher is using a given fork?

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

28 Copyright ©: University of Illinois CS 241 Staff

How do we guarantee that there is
no deadlock?

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

30 Copyright ©: University of Illinois CS 241 Staff

How do we guarantee that the
solution is fair?

void take_forks(int i) {

 mutexLock(lock);

 state[i] = HUNGRY;

 test(i);

 mutexUnlock(lock);

 semWait(sem[i]);

}

void put_forks(int i) {

 mutexLock(lock);

 state[i] = THINKING;

 test(LEFT);

 test(RIGHT);

 mutexUnlock(lock);

}

/* only called with lock set!

*/

void test(int i) {

 if (state[i] == HUNGRY &&

 state[LEFT] != EATING &&

 state[RIGHT] != EATING) {

 state[i] = EATING;

 semSignal(sem[i]);

 }

}

Dining Philosophers: Take 2

32 Copyright ©: University of Illinois CS 241 Staff

What do we need to
change to solve this with

condition variables?

 Picking up both left and right chopsticks
is an atomic operation?

 Or, we have N philosophers & N+1
chopsticks?



What if...

35 Copyright ©: University of Illinois CS 241 Staff

 Picking up both left and right chopsticks
is an atomic operation?

 That works (i.e., prevents deadlock)

 This is essentially what we just did!

 Or, we have N philosophers & N+1
chopsticks?

 That works too!

 And we’ll see another solution later...

What if...

36 Copyright ©: University of Illinois CS 241 Staff

