Classical Synchronization :I
Problems

~_
Sy
T

Reader-Writer Problem

Readers read data

Writers write data

Rules

o Multiple readers may read the data simultaneously

o Only one writer can write the data at any time

o Areader and a writer cannot access data simultaneously
Locking table

o Whether any two can be in the critical section
simultaneously

Reader| Writer
Reader OK NoO
Writer NoO NoO

Copyright ©: University of lllinois CS 241 Staff

Sleeping Barber

Customers
N chairs for waiting

Barber

Can cut one customer’s
hair at any time

No waliting customer =>
barber sleeps

Customer enters

If all waliting chairs full,
customer leaves

If barber asleep, wake up
barber and get hair cut

Otherwise (barber is
busy), wait in a chair

Copyright ©: University of lllinois CS 241 Staff

Sleeping Barber

N RTState! #define CHAIRS 5
Wmﬂﬁ% semaphore customers, barbers;
g_ 247 \& mutex lock
u) oot Y
%@Jé & int waiting
barber { customer
while (TRUE) { mutexLock (lock) ;
mm) semWait (customers) ; if (waiting < chairs) {
Sleepifno | +exLock (Lock) ; Wake Up iting = waiting+l:
customers ' barbers J Ire
waiting = waiting-1; =) semSignal (customers) ;
semSignal (barbers) ; mutexUnlock (lock) ;
Qne barber mutexUnlock (lock) ; memmmm) sSemWait (barbers) ;
IS ready to) Wait for .
: cutHair () ; getHaircut() ;
cut hair barber
} else {
} If no free ™= mputexUnlock (lock) ;
chairs, }

leave ‘
Copyright ©: University of lllinois CS 241 Staff 4 "

Sleeping Barber

barber {

while (TRUE) {
semWait (customers) ;
mutexLock (lock) ;
waiting = waiting-1;
semSignal (barbers) ;
mutexUnlock (lock) ;
cutHair () ;

}
What is the shared data?

What part protects the shared data? ¥]
5

Copyright ©: University of lllinois CS 241 Staff

#define CHAIRS 5
semaphore customers, barbers;
mutex lock

int waiting

customer

mutexLock (lock) ;

if (waiting < chairs) {
waiting = waiting+l;
semSignal (customers) ;
mutexUnlock (lock) ;
semWait (barbers) ;
getHaircut() ;

else {
mutexUnlock (lock) ;

Sleeping Barber

barber {

while (TRUE) {
semWait (customers) ;
mutexLock (lock) ;
waiting = waiting-1;
semSignal (barbers) ;
mutexUnlock (lock) ;
cutHair () ;

}

What guarantees that not too many

customer are waiting?

Copyright ©: University of lllinois CS 241 Staff 7]

#define CHAIRS 5
semaphore customers, barbers;
mutex lock

int waiting

customer

mutexLock (lock) ;

if (waiting < chairs) {
waiting = waiting+l;
semSignal (customers) ;
mutexUnlock (lock) ;
semWait (barbers) ;
getHaircut() ;

else {
mutexUnlock (lock) ;

}

Sleeping Barber

barber {

while (TRUE) {
semWait (customers) ;
mutexLock (lock) ;
waiting = waiting-1;
semSignal (barbers) ;
mutexUnlock (lock) ;
cutHair () ;

}

What guarantees that there is
only one customer in the chair?

Copyright ©: University of lllinois CS 241 Staff 9]

#define CHAIRS 5
semaphore customers, barbers;
mutex lock

int waiting

customer

mutexLock (lock) ;

if (waiting < chairs) {
waiting = waiting+l;
semSignal (customers) ;
mutexUnlock (lock) ;
semWait (barbers) ;
getHaircut() ;

else {
mutexUnlock (lock) ;

}

Sleeping Barber

barber {

while (TRUE) {
semWait (customers) ;
mutexLock (lock) ;
waiting = waiting-1;
semSignal (barbers) ;
mutexUnlock (lock) ;
cutHair () ;

}

What guarantees that the barber
doesn’t miss a customer?

Copyright ©: University of lllinois CS 241 Staff 11]

#define CHAIRS 5
semaphore customers, barbers;
mutex lock

int waiting

customer

mutexLock (lock) ;

if (waiting < chairs) {
waiting = waiting+l;
semSignal (customers) ;
mutexUnlock (lock) ;
semWait (barbers) ;
getHaircut() ;

else {
mutexUnlock (lock) ;

}

[Dining Philosophers]

= N philosophers and N forks
= Philosophers eat/think

= Eating needs 2 forks

= Pick up one fork at a time

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers

Y=
TS

Locierorte

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers: Take 1

define N 5

void philosopher (int i) ({
while (TRUE) {

think () ;
take fork(i);
take fork((i+l) %N);
eat(); /* yummy */
put fork(i);
put fork ((i+l) %N) ;

} Does this work?

Copyright ©: University of lllinois CS 241 Staff

[What IS deadlock?

Necessary and sufficient conditions for
deadlock

o Mutual exclusion

o Hold and wait

o No preemption

o Circular wait

Which properties does our solution to
dining philosophers have?

Copyright ©: University of lllinois CS 241 Staff

[Conditions for Deadlock

Mutual exclusion
o Exclusive use of chopsticks

Hold and walit
o Hold 1 chopstick, wait for next
No preemption

o Cannot force another to release held
resource

Circular wait

o Each waits for next neighbor to put down
chopstick

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers: Take 1

define N 5

void philosopher (int i) ({
while (TRUE) {

think () ;
take fork (i) ;
take fork((i+l) %N);
eat(); /* yummy */
put fork (i) ;
put fork ((i+1) 3N);

} How can we fix this?

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers: Take 1

define N 5

void philosopher (int i) ({
while (TRUE) ({

think () ;
take fork(i); _

u take forks (i) ;
take fork((i+l) %N) ; }" ake_forks (1)

eat(); /* yummy */

put_fork(1i); put forks (i) ;
put fork ((i+1)%N) ; - ’

} How can we fix this?

Copyright ©: University of lllinois CS 241 Staff 20]

Dining Philosophers: Take 2

#define N
THINKING
HUNGRY
EATING

#define
#define
#define
#define
#define

(1 - 1)3N

RIGHT (i + 1)3N

Copyright ©: University of lllinois CS 241 Staff 21]

int state[N];
mutex lock;
semaphore sem[N];

void philosopher (int i) {
while (TRUE) {
think () ;
take forks(i);
eat(); /* yummy */
put forks(i);

Dining Philosophers: Take 2

void take forks(int i) { /* only called with lock set!
mutexLock (lock) ; */
state[i1] = HUNGRY;
test (i) ; void test(int i) {
mutexUnlock (lock) ; if (state[i] == HUNGRY &&
semWait (sem[i]) ; state[LEFT] != EATING &&
} state[RIGHT] != EATING) {
state[i] = EATING;
void put forks(int i) { semSignal (sem[i]) ;
mutexLock (lock) ; }
state[i] = THINKING; }
test (LEFT) ;
test (RIGHT) ;

mutexUnlock (lock) ;

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers: Take 2

void take forks(int i) { /* only called with lock set!
. * /
Try to get mutech.>ck (lock) ;
2 forks state[i1] = HUNGRY;

'S;:hbec;t?];?rﬁ;gf state [LEFT] '= EATING &&
Blockyif forks IO state[RIGHT] != EATING) {

. IS hungr
not acquired % state[i] = EATING;

@g semSignal (sem[i]) ; <{=——
/® @ \ Signal
P I

= &5
o[¢

Copyright ©: University of lllinois CS 241 Staff 23]

semWait (sem[i]) ;

Dining Philosophers: Take 2

LEFT \
| gg@ /* only called with lock set!
*/
i %
=~ A void test(int i) {
@ %G t both f kif_ﬁ(state[i] == HUNGRY &&
et bo OrKS | =
r <2), neither neighbor state[LEFT] != EATING &&
is hunar state[RIGHT] '= EATING) {
RIGHT Lb state[i] = EATING;
void put forks (int i) { semSignal (sem[i]) ; (e
— _ } Signal
mutech?ck (lock) ; \ waiting
state[i] = THINKING; philosopher

mmssss) test (LEFT) ;
Let others test (RIGHT) ;

getaturn mutexUnlock (lock) ;

Copyright ©: University of lllinois CS 241 Staff 24]

Dining Philosophers: Take 2

void take forks(int i) { /* only called with lock set!
: */
Try to get mutech.>ck (lock) ;
2 forks state[i1] = HUNGRY;
mutexUnlock (lock) ;- i hoih forkjéfiff(State[i] == HUNGRY &&
mm) semWalt (sem[1]); peither neighbor state[LEFT] !'= EATING &&
Block}n‘ forks : state[RIGHT] '= EATING) {
) IS hun% :
not acquired state[i] = EATING;
void put forks(int i) { semSignal (sem[i]) ; SignT
mutexLock (lock) ; } waiting
state[i] = THINKING; } ohilosopher

mmssss) test (LEFT) ;
Let others test (RIGHT) ;

getatum ., texUnlock (lock) ;
}

Copyright ©: University of lllinois CS 241 Staff 25]

Dining Philosophers: Take 2

void take forks(int i) { /* only called with lock set!

mutexLock (lock) ; */
state[i] = HUNGRY;
test (i) ; void test(int i) {
mutexUnlock (lock) ; if (state[i] == HUNGRY &&
semWait (sem[i]); state[LEFT] '= EATING &&
} state[RIGHT] != EATING) {
state[i] = EATING;
void put forks(int i) { semSignal (sem[i]) ;
mutexLock (lock) ; }
state[i] = THINKING; }
test (LEFT) ;
test (RIGHT) ; How do we guarantee that only one
mutexUnlock (lock) ; philosopher is using a given fork?

Copyright ©: University of lllinois CS 241 Staff 26]

Dining Philosophers: Take 2

void take forks(int i) { /* only called with lock set!

mutexLock (lock) ; */
state[i] = HUNGRY;
test (i) ; void test(int i) {
mutexUnlock (lock) ; if (state[i] == HUNGRY &&
semWait (sem[i]); state[LEFT] '= EATING &&
} state[RIGHT] != EATING) {
state[i] = EATING;
void put forks(int i) { semSignal (sem[i]) ;
mutexLock (lock) ; }
state[i] = THINKING; }
test (LEFT) ;
test (RIGHT) ; How do we guarantee that there is
mutexUnlock (lock) ; no deadlock?

Copyright ©: University of lllinois CS 241 Staff 28]

Dining Philosophers: Take 2

void take forks(int i) { /* only called with lock set!

mutexLock (lock) ; */
state[i] = HUNGRY;
test (i) ; void test(int i) {
mutexUnlock (lock) ; if (state[i] == HUNGRY &&
semWait (sem[i]); state[LEFT] '= EATING &&
} state[RIGHT] '= EATING) {
state[i] = EATING;
void put forks(int i) { semSignal (sem[i]) ;
mutexLock (lock) ; }
state[i] = THINKING; }
test (LEFT) ;
test (RIGHT) ; How do we guarantee that the

e
mutexUnlock (lock) ; solution is fair?

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers: Take 2

void take forks(int i) { /* only called with lock set!
mutexLock (lock) ; */
state[i1] = HUNGRY;
test (i) ; void test(int i) {
mutexUnlock (lock) ; if (state[i] == HUNGRY &&
semWait (sem[1i]) ; state[LEFT] != EATING &&
} state[RIGHT] != EATING) {
state[i] = EATING;
void put forks(int i) { semSignal (sem[i]) ;
mutexLock (lock) ; }
state[i] = THINKING; }
test(IEEi"T) ,. What do we need to
test (RIGHT) ; change to solve this with

mutexUnlock (lock) ; condition variables?

Copyright ©: University of lllinois CS 241 Staff 32]

[What If...

Picking up both left and right chopsticks
IS an atomic operation?

Or, we have N philosophers & N+1
chopsticks?

Copyright ©: University of lllinois CS 241 Staff

[What If...

Picking up both left and right chopsticks
IS an atomic operation?

o That works (i.e., prevents deadlock)
o This is essentially what we just did!

Or, we have N philosophers & N+1
chopsticks?
o That works too!

And we’ll see another solution later...

Copyright ©: University of lllinois CS 241 Staff

