
Classical Synchronization

Problems

12 Copyright ©: University of Illinois CS 241 Staff

This lecture

 Goals

 Introduce classical synchronization
problems

 Topics

 Producer-Consumer Problem

 Reader-Writer Problem

 Dining Philosophers Problem

 Sleeping Barber’s Problem

13 Copyright ©: University of Illinois CS 241 Staff

Producer-consumer problem

 Chefs cook items and put

them on a conveyer belt

14 Copyright ©: University of Illinois CS 241 Staff

 Waiters pick items
off the belt

Producer-consumer problem

 Now imagine

many chefs!

15 Copyright ©: University of Illinois CS 241 Staff

 And many
waiters!

Producer-consumer problem

 A potential mess!

16 Copyright ©: University of Illinois CS 241 Staff

Producer-Consumer Problem

17 Copyright ©: University of Illinois CS 241 Staff

Shared resource:

bounded buffer

inserts items removes items

Efficient implementation:

circular fixed-size buffer

Chef (Producer) Waiter (Consumer)

Producer-Consumer

18 Copyright ©: University of Illinois CS 241 Staff

Chef = Producer

Waiter = Consumer

Producer-Consumer

insertPtr

removePtr

19 Copyright ©: University of Illinois CS 241 Staff

Chef = Producer

Waiter = Consumer

What does the

chef do with a

new pizza?

Where does the

waiter take a

pizza from?

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

20 Copyright ©: University of Illinois CS 241 Staff

Insert pizza

insertPtr

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

21 Copyright ©: University of Illinois CS 241 Staff

Insert pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

22 Copyright ©: University of Illinois CS 241 Staff

Insert pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

23 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

removePtr

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

24 Copyright ©: University of Illinois CS 241 Staff

Insert pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

25 Copyright ©: University of Illinois CS 241 Staff

Insert pizza

Producer-Consumer

insertPtr

removePtr

BUFFER FULL:

Producer must be

blocked!

Chef = Producer

Waiter = Consumer

26 Copyright ©: University of Illinois CS 241 Staff

Insert pizza

Producer-Consumer

insertPtr
removePtr

Chef = Producer

Waiter = Consumer

27 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

28 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

29 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

30 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

31 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

32 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer

insertPtr

removePtr

Chef = Producer

Waiter = Consumer

33 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer

insertPtr

removePtr

BUFFER EMPTY:

Consumer must be

blocked!

Chef = Producer

Waiter = Consumer

34 Copyright ©: University of Illinois CS 241 Staff

Remove pizza

Producer-Consumer Summary

 Producer
 Insert items

 Update insertion pointer

 Consumer
 Execute destructive read on the buffer

 Update removal pointer

 Both
 Update information about how full/empty the buffer is

 Solution
 Must allow multiple producers and consumers

Copyright ©: University of Illinois CS 241 Staff 35

Designing a solution

Copyright ©: University of Illinois CS 241 Staff 36

Chef (Producer) Waiter (Consumer)

Wait for empty slot

Insert item

Signal item arrival

Wait for item arrival

Remove item

Signal empty slot available

What synchronization do we need?

Challenges

 Prevent buffer overflow

 Prevent buffer underflow

 Mutual exclusion when modifying the

buffer data structure

40 Copyright ©: University of Illinois CS 241 Staff

Assembling the solution

 Producer
 sem_wait(slots), sem_signal(slots)

 Initialize semaphore slots to N

 Consumer
 sem_wait(items), sem_signal(items)

 Initialize semaphore items to 0

 Synchronization
 mutex_lock(m), mutex_unlock(m)

 Buffer management
 insertptr = insertptr+1

 removalptr = removalptr+1

Copyright ©: University of Illinois CS 241 Staff 44

Assembling the solution

 Producer
 sem_wait(slots), sem_signal(slots)

 Initialize semaphore slots to N

 Consumer
 sem_wait(items), sem_signal(items)

 Initialize semaphore items to 0

 Synchronization
 mutex_lock(m), mutex_unlock(m)

 Buffer management
 insertptr = (insertptr+1) % N

 removalptr = (removalptr+1) % N

Copyright ©: University of Illinois CS 241 Staff 45

Producer-Consumer Code

buffer[insertPtr] =

data;

insertPtr = (insertPtr

+ 1) % N;

result =

buffer[removePtr];

removePtr = (removePtr

+1) % N;

Copyright ©: University of Illinois CS 241 Staff 46

Critical Section: move insert

pointer

Critical Section: move remove

pointer

Producer-Consumer Code

sem_wait(slots);

mutex_lock(mutex);

buffer[insertPtr] =

data;

insertPtr = (insertPtr

+ 1) % N;

mutex_unlock(mutex);

sem_signal(items);

sem_wait(items);

mutex_lock(mutex);

result =

buffer[removePtr];

removePtr = (removePtr

+1) % N;

mutex_unlock(mutex);

sem_signal(slots);

Copyright ©: University of Illinois CS 241 Staff 47

Block if

there

are no

free

slots

Block if

there

are no

items

to

take

Counting semaphore – check

and decrement the number of

free slots

Counting semaphore – check

and decrement the number of

available items

Done – increment the number

of available items

Done – increment the number

of free slots

Consumer Pseudocode:
getItem()

sem_wait(items);

mutex_lock(mutex);

result = buffer[removePtr];

removePtr = (removePtr +1) % N;

mutex_unlock(mutex);

sem_signal(slots);

Copyright ©: University of Illinois CS 241 Staff 48

Error checking/EINTR handling not shown

Producer Pseudocode:
putItem(data)

sem_wait(slots);

mutex_lock(mutex);

buffer[insertPtr] = data;

insertPtr = (insertPtr + 1) % N;

mutex_unlock(mutex);

sem_signal(items);

Copyright ©: University of Illinois CS 241 Staff 49

Error checking/EINTR handling not shown

Shared Resource

Readers-Writers Problem

Shared Resource

Readers-Writers Problem

Shared Resource

Readers-Writers Problem

Reader-Writer Problem

 Readers read data

 Writers write data

 Rules
 Multiple readers may read the data simultaneously

 Only one writer can write the data at any time

 A reader and a writer cannot access data simultaneously

 Locking table
 Whether any two can be in the critical section

simultaneously

Copyright ©: University of Illinois CS 241 Staff 53

Reader Writer

Reader OK No

Writer No No

reader() {

 while(TRUE) {

 <other stuff>;

 sem_wait(mutex);

 readCount++;

 if(readCount == 1)

 sem_wait(writeBlock);

 sem_signal(mutex);

 /* Critical section */

 access(resource);

 sem_wait(mutex);

 readCount--;

 if(readCount == 0)

 sem_signal(writeBlock);

 sem_post(mutex);

 }

}

writer() {

 while(TRUE) {

 <other computing>;

 sem_wait(writeBlock);

 /* Critical section */

 access(resource);

 sem_signal(writeBlock);

 }

}

Reader-Writer: First Solution
int readCount = 0;

semaphore mutex = 1;

semaphore writeBlock = 1;

reader() {

 while(TRUE) {

 <other computing>;

 sem_wait(readBlock);

 sem_wait(mutex1);

 readCount++;

 if(readCount == 1)

 sem_wait(writeBlock);

 sem_signal(mutex1);

 sem_signal(readBlock);

 access(resource);

 sem_wait(mutex1);

 readCount--;

 if(readCount == 0)

 sem_signal(writeBlock);

 sem_signal(mutex1);

 }

}

writer() {

 while(TRUE) {

 <other computing>;

 sem_wait(mutex2);

 writeCount++;

 if(writeCount == 1)

 sem_wait(readBlock);

 sem_signal(mutex2);

 sem_wait(writeBlock);

 access(resource);

 sem_signal(writeBlock);

 sem_wait(mutex2);

 writeCount--;

 if(writeCount == 0)

 sem_signal(readBlock);

 sem_signal(mutex2);

 }

}

Reader-Writer: Second

Solution
int readCount=0, writeCount=0;

semaphore mutex1=1, mutex2=1;

Semaphore readBlock=1,writeBlock=1

Better R-W solution idea

 Idea: serve requests in order

 Once a writer requests access, any

entering readers have to block until the

writer is done

 Advantage?

 Disadvantage?

60 Copyright ©: University of Illinois CS 241 Staff

reader() {

 while(TRUE) {

 <other computing>;

 sem_wait(writePending);

 sem_wait(readBlock);

 sem_wait(mutex1);

 readCount++;

 if(readCount == 1)

 sem_wait(writeBlock);

 sem_signal(mutex1);

 sem_signal(readBlock);

 sem_signal(writePending);

 access(resource);

 sem_wait(mutex1);

 readCount--;

 if(readCount == 0)

 sem_signal(writeBlock);

 sem_signal(mutex1);

 }

}

writer() {

 while(TRUE) {

 <other computing>;

 sem_wait(writePending);

 sem_wait(mutex2);

 writeCount++;

 if(writeCount == 1)

 sem_wait(readBlock);

 sem_signal(mutex2);

 sem_wait(writeBlock);

 access(resource);

 sem_signal(writeBlock);

 sem_signal(writePending);

 sem_wait(mutex2);

 writeCount--;

 if(writeCount == 0)

 sem_signal(readBlock);

 sem_signal(mutex2);

 }

}

Reader-Writer: Fairer

Solution?
int readCount = 0, writeCount = 0;

semaphore mutex1 = 1, mutex2 = 1;

semaphore readBlock = 1, writeBlock = 1, writePending = 1;

Summary

 Classic synchronization problems

 Producer-Consumer Problem

 Reader-Writer Problem

 Saved for next time:

 Sleeping Barber’s Problem

 Dining Philosophers Problem

66 Copyright ©: University of Illinois CS 241 Staff

Dining Philosophers

 N philosophers and N forks

 Philosophers eat/think

 Eating needs 2 forks

 Pick one fork at a time

2

67 Copyright ©: University of Illinois CS 241 Staff

