
Classical Synchronization 

Problems 

12 Copyright ©:  University of Illinois CS 241 Staff 



This lecture 

 Goals 

 Introduce classical synchronization 
problems 

 Topics 

 Producer-Consumer Problem 

 Reader-Writer Problem 

 Dining Philosophers Problem 

 Sleeping Barber’s Problem 
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Producer-consumer problem 

 Chefs cook items and put 

them on a conveyer belt 
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 Waiters pick items 
off the belt 



Producer-consumer problem 

 Now imagine 

many chefs! 
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 And many 
waiters! 



Producer-consumer problem 

 A potential mess! 
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Producer-Consumer Problem 
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Shared resource: 

bounded buffer 

inserts items removes items 

Efficient implementation: 

circular fixed-size buffer 

Chef (Producer) Waiter (Consumer) 



Producer-Consumer 
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Chef   = Producer 

Waiter  = Consumer 



Producer-Consumer 

insertPtr 

removePtr 
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Chef   = Producer 

Waiter  = Consumer 

What does the 

chef do with a 

new pizza? 

Where does the 

waiter take a 

pizza from? 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 
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Insert pizza 

insertPtr 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 
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Insert pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 
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Insert pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 
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Remove pizza 

removePtr 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 
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Insert pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 

25 Copyright ©:  University of Illinois CS 241 Staff 

Insert pizza 



Producer-Consumer 

insertPtr 

removePtr 

BUFFER FULL: 

Producer must be 

blocked! 

Chef   = Producer 

Waiter  = Consumer 
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Insert pizza 



Producer-Consumer 

insertPtr 
removePtr 

Chef   = Producer 

Waiter  = Consumer 
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Remove pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 
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Remove pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 
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Remove pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 
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Remove pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 
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Remove pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 
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Remove pizza 



Producer-Consumer 

insertPtr 

removePtr 

Chef   = Producer 

Waiter  = Consumer 
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Remove pizza 



Producer-Consumer 

insertPtr 

removePtr 

BUFFER EMPTY: 

Consumer must be 

blocked! 

Chef   = Producer 

Waiter  = Consumer 
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Remove pizza 



Producer-Consumer Summary 

 Producer  
 Insert items 

 Update insertion pointer 

 Consumer  
 Execute destructive read on the buffer 

 Update removal pointer 

 Both  
 Update information about how full/empty the buffer is 

 Solution  
 Must allow multiple producers and consumers 
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Designing a solution 
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Chef (Producer) Waiter (Consumer) 

Wait for empty slot 

Insert item 

Signal item arrival 

Wait for item arrival 

Remove item 

Signal empty slot available 

What synchronization do we need? 



Challenges 

 Prevent buffer overflow 

 Prevent buffer underflow 

 Mutual exclusion when modifying the 

buffer data structure 
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Assembling the solution 

 Producer 
 sem_wait(slots),  sem_signal(slots) 

 Initialize semaphore slots to N 

 Consumer 
 sem_wait(items),  sem_signal(items) 

 Initialize semaphore items to 0 

 Synchronization 
 mutex_lock(m),  mutex_unlock(m) 

 Buffer management 
 insertptr =  insertptr+1 

 removalptr =  removalptr+1 
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Assembling the solution 

 Producer 
 sem_wait(slots),  sem_signal(slots) 

 Initialize semaphore slots to N 

 Consumer 
 sem_wait(items),  sem_signal(items) 

 Initialize semaphore items to 0 

 Synchronization 
 mutex_lock(m),  mutex_unlock(m) 

 Buffer management 
 insertptr = (insertptr+1) % N 

 removalptr = (removalptr+1) % N 
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Producer-Consumer Code 

 

 

buffer[ insertPtr ] = 

data; 

insertPtr = (insertPtr 

+ 1) % N; 

 

 

result = 

buffer[removePtr]; 

removePtr = (removePtr 

+1) % N; 
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Critical Section: move insert 

pointer 

Critical Section: move remove 

pointer 



Producer-Consumer Code 

sem_wait(slots); 

mutex_lock(mutex); 

buffer[ insertPtr ] = 

data; 

insertPtr = (insertPtr 

+ 1) % N; 

mutex_unlock(mutex); 

sem_signal(items); 

 

sem_wait(items); 

mutex_lock(mutex); 

result = 

buffer[removePtr]; 

removePtr = (removePtr 

+1) % N; 

mutex_unlock(mutex); 

sem_signal(slots); 
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Block if 

there 

are no 

free 

slots 

Block if 

there 

are no 

items  

to  

take 

Counting semaphore – check 

and decrement the  number of 

free slots 

Counting semaphore – check 

and decrement the number of 

available items 

Done – increment the number 

of available items 

Done – increment the number 

of free slots 



Consumer Pseudocode: 
getItem() 

sem_wait(items); 

mutex_lock(mutex); 

result = buffer[removePtr]; 

removePtr = (removePtr +1) % N; 

mutex_unlock(mutex); 

sem_signal(slots); 
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Error checking/EINTR handling not shown 



Producer Pseudocode: 
putItem(data) 

sem_wait(slots); 

mutex_lock(mutex); 

buffer[ insertPtr ] = data; 

insertPtr = (insertPtr + 1) % N; 

mutex_unlock(mutex); 

sem_signal(items); 
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Error checking/EINTR handling not shown 



Shared Resource 

Readers-Writers Problem 



Shared Resource 

Readers-Writers Problem 



Shared Resource 

Readers-Writers Problem 



Reader-Writer Problem 

 Readers read data 

 Writers write data 

 Rules 
 Multiple readers may read the data simultaneously 

 Only one writer can write the data at any time 

 A reader and a writer cannot access data simultaneously 

 Locking table 
 Whether any two can be in the critical section 

simultaneously 
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Reader Writer 

Reader  OK No 

Writer No No 



reader() { 

  while(TRUE) { 

    <other stuff>; 

    sem_wait(mutex); 

    readCount++; 

 

    if(readCount == 1) 

      sem_wait(writeBlock); 

    sem_signal(mutex); 

 

    /* Critical section */ 

       access(resource); 

 

    sem_wait(mutex); 

    readCount--; 

    if(readCount == 0) 

      sem_signal(writeBlock); 

    sem_post(mutex); 

  } 

} 

writer() { 

  while(TRUE) { 

    <other computing>; 

    sem_wait(writeBlock); 

    /* Critical section */ 

    access(resource); 

    sem_signal(writeBlock); 

  } 

} 

Reader-Writer: First Solution 
int readCount = 0; 

semaphore mutex = 1; 

semaphore writeBlock = 1; 



reader() { 

  while(TRUE) { 

    <other computing>; 

    sem_wait(readBlock);      

    sem_wait(mutex1);  

    readCount++; 

    if(readCount == 1) 

      sem_wait(writeBlock); 

    sem_signal(mutex1);  

    sem_signal(readBlock);      

 

    access(resource); 

    sem_wait(mutex1);  

    readCount--; 

    if(readCount == 0) 

      sem_signal(writeBlock);     

    sem_signal(mutex1);  

  } 

} 

writer() { 

  while(TRUE) { 

    <other computing>; 

    sem_wait(mutex2); 

    writeCount++; 

    if(writeCount == 1) 

      sem_wait(readBlock); 

    sem_signal(mutex2); 

    sem_wait(writeBlock); 

    access(resource); 

    sem_signal(writeBlock); 

    sem_wait(mutex2); 

    writeCount--; 

    if(writeCount == 0) 

      sem_signal(readBlock);     

    sem_signal(mutex2); 

  } 

} 

Reader-Writer: Second 

Solution 
int readCount=0, writeCount=0; 

semaphore mutex1=1, mutex2=1; 

Semaphore readBlock=1,writeBlock=1  



Better R-W solution idea 

 Idea: serve requests in order 

 Once a writer requests access, any 

entering readers have to block until the 

writer is done 

 Advantage? 

 Disadvantage? 
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reader() { 

  while(TRUE) { 

    <other computing>; 

    sem_wait(writePending); 

    sem_wait(readBlock); 

    sem_wait(mutex1); 

    readCount++; 

    if(readCount == 1) 

      sem_wait(writeBlock); 

    sem_signal(mutex1); 

    sem_signal(readBlock); 

    sem_signal(writePending); 

    access(resource); 

    sem_wait(mutex1); 

    readCount--; 

    if(readCount == 0) 

      sem_signal(writeBlock); 

    sem_signal(mutex1); 

  } 

} 

writer() { 

  while(TRUE) { 

    <other computing>; 

    sem_wait(writePending); 

    sem_wait(mutex2); 

    writeCount++; 

    if(writeCount == 1) 

      sem_wait(readBlock); 

    sem_signal(mutex2); 

    sem_wait(writeBlock); 

    access(resource); 

    sem_signal(writeBlock); 

    sem_signal(writePending); 

    sem_wait(mutex2); 

    writeCount--; 

    if(writeCount == 0) 

      sem_signal(readBlock); 

    sem_signal(mutex2); 

  } 

} 

Reader-Writer: Fairer 

Solution? 
int readCount = 0, writeCount = 0; 

semaphore mutex1 = 1, mutex2 = 1; 

semaphore readBlock = 1, writeBlock = 1, writePending = 1; 



Summary 

 Classic synchronization problems 

 Producer-Consumer Problem 

 Reader-Writer Problem 

 Saved for next time: 

 Sleeping Barber’s Problem 

 Dining Philosophers Problem 
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Dining Philosophers 

 N philosophers and N forks 

 Philosophers eat/think 

 Eating needs 2 forks 

 Pick one fork at a time  
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