Classical Synchronization
Problems

~_

[ese |

iy
T

Copyright ©: University of lllinois CS 241 Staff

[This lecture

Goals

o Introduce classical synchronization
oroblems

Topics

o Producer-Consumer Problem
o Reader-Writer Problem

o Dining Philosophers Problem
o Sleeping Barber’'s Problem

Copyright ©: University of lllinois CS 241 Staff

[Producer-consumer problem]

U = Chefs cook items and put
j} them on a conveyer belt

= Waiters pick items
off the belt

Copyright ©: University of lllinois CS 241 Staff

[Producer-consumer problem]

= Now imagine
many chefs!

= And many
waiters!

[Producer-consumer problem]

Producer-Consumer Problem

Chef (Producer) Waiter (Consumer)
}L’/‘: \>
Inserts items removes items

_} Shared resource: _/

bounded buffer

Efficient implementation:
circular fixed-size buffer

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

P Chef = Producer

Waiter = Consumer

O

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer

Culh Chef = Producer
Waiter = Consumer
i

InsertPtr
removePtr
What does the Where does the
chef do with a waiter take a
new pizza? pizza from?

o

Copyright ©: University of lllinois CS 241 Staff 19]

Producer-Consumer

'« Chef = Producer
Waliter = Consumer

removePtr

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

Cull Chef = Producer
Waiter = Consumer
A InsertPtr

*f;_\'/

removePtr

Insert pizza

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

a Chef = Producer
Waiter = Consumer
_—" InsertPtr

removePtr

Insert pizza

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer

a Chef = Producer
Waiter = Consumer
_—" InsertPtr

removePtr

Remove pizza

removePtr

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

a Chef = Producer
Waiter = Consumer

Insert pizza

removePtr

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

- Chef = Producer
Waiter = Consumer

Insert pizza InsertPtr

removePtr

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer

Chef = Producer
Waiter = Consumer

L/

BUFFER FULL:
Producer must be
blocked!

InsertPtr

removePtr

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

a Chef = Producer
Waiter = Consumer

: Remove pizza
removeptr NSENPU P

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

a Chef = Producer
Waliter = Consumer

Remove pizza

InsertPtr

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer
N_/ Chef = Producer

Waiter = Consumer

InsertPtr

Remove pizza

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

a Chef = Producer
Waliter = Consumer
& removePtr

¥

Remove pizza

InsertPtr

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

a Chef = Producer
Waliter = Consumer
\ 2 removePtr

Remove pizza

InsertPtr

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer

- Chef = Producer
Waliter = Consumer

insertPtr Remo plzza

Copyright ©: University of lllinois CS 241 Staff

[Producer-Consumer

'« Chef = Producer
Waliter = Cconsumer

Remove pizza

InsertPtr

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer

- Chet = Producer
6 Waiter = Consumer
™
BUFFER EMPTY:
Consumer must be
blocked!
removePtr |
insertPtr Ree|zza

v .
y A\

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer Summary

= Producer -
o Insert items -
o Update insertion pointer ey
= Consumer
o Execute destructive read on the buffer KT\/Q
o Update removal pointer L
= Both
o Update information about how full/empty the buffer is
= Solution
o Must allow multiple producers and consumers

200000
G

|
SN SN S S S

Copyright ©: University of lllinois CS 241 Staff 35]

Designing a solution

Chef (Producer) Waiter (Consumer)
™ 4

Walit for empty slot Wait for item arrival

Insert item Remove item

Signal item arrival Signal empty slot available

What synchronization do we need?

Copyright ©: University of lllinois CS 241 Staff 36]

[Challenges

Prevent buffer overflow
Prevent buffer underflow

Mutual exclusion when modifying the
buffer data structure

Copyright ©: University of lllinois CS 241 Staff

Assembling the solution

Producer

O sem wait(slots), sem signal (slots)
o Initialize semaphore slots tON

Consumer

O sem wait(items), sem signal (items)
o Initialize semaphore items to 0
Synchronization

0 mutex lock(m), mutex unlock (m)
Buffer management

O 1insertptr = insertptr+l

O removalptr = removalptr+l

Copyright ©: University of lllinois CS 241 Staff

Assembling the solution

Producer

O sem wait(slots), sem signal (slots)
o Initialize semaphore slots tON

Consumer

O sem wait(items), sem signal (items)
o Initialize semaphore items to 0
Synchronization

0 mutex lock(m), mutex unlock (m)
Buffer management

O insertptr = (insertptr+l) $ N

O removalptr = (removalptr+l) % N

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer Code

Critical Section: move insert Critical Section: move remove
pointer pointer
buffer[insertPtr] = result =
data; buffer|[removePtr] ;
insertPtr = (insertPtr removePtr = (removePtr
+ 1) $ N; +1) % N;

Copyright ©: University of lllinois CS 241 Staff

Producer-Consumer Code

®_ Counting semaphore — check
| and decrement the number of
free slots
) sem wait (slots);

Block if Mutex_ lock (mutex) ;

there buffer[insertPtr] =
are no data;
free : .
insertPtr = (insertPtr
slots
+ 1) $ N;

mutex unlock (mutex) ;
memmm) Sem signal (items) ;

Done — increment the number
of available items

Copyright ©: University of lllinois CS 241 Staff

Counting semaphore — check
and decrement the number of
available items

o
@

sem wait (items); amm—
mutex lock (mutex) ; Block if
result = there
buffer[removePtr] ; are no
items
removePtr = (removePtr to
+1) % N; take
mutex unlock (mutex) ;
sem signal (slots); ammm—

Done — increment the number
of free slots

1

Consumer Pseudocode:
getlItem()

sem wait(items);
mutex_lock(mutex);

result = buffer|[removePtr];

\

removePtr = (removePtr +1) % N;

mutex_unlock(mutex);

sem signal (slots);

Error checking/EINTR handling not shown

Copyright ©: University of lllinois CS 241 Staff

Producer Pseudocode:
putltem(data)

sem wait(slots);
mutex lock (mutex);

buffer[insertPtr] = data;
insertPtr = (insertPtr + 1) % N;
mutex unlock (mutex) ;

sem signal (items);

Error checking/EINTR handling not shown

Copyright ©: University of lllinois CS 241 Staff

[Readers-Writers Problem

Shared Resource

[Readers-Writers Problem

[Readers-Writers Problem

Shared Resource

Reader-Writer Problem

Readers read data

Writers write data

Rules

o Multiple readers may read the data simultaneously

o Only one writer can write the data at any time

o Areader and a writer cannot access data simultaneously
Locking table

o Whether any two can be in the critical section
simultaneously

Reader| Writer
Reader OK NoO
Writer NoO NoO

Copyright ©: University of lllinois CS 241 Staff

Reader-Writer: First Solution

reader () {
while (TRUE) ({

<other stuff>;
sem wait (mutex) ;
readCount++;

if (readCount == 1)
sem wait (writeBlock);
sem signal (mutex) ;

/* Critical section */
access (resource) ;

sem wait (mutex) ;
readCount--;
if (readCount == 0)

sem signal (writeBlock) ;
sem post (mutex) ;

int readCount = 0;
semaphore mutex = 1;
semaphore writeBlock = 1;

writer () {
while (TRUE) {
<other computing>;
sem wait (writeBlock);
/* Critical section */
access (resource) ;
sem signal (writeBlock) ;

Reader-Writer: Second
Solution

int readCount=0, writeCount=0;

reader () { semaphore mutexl=1, mutex2=1;
while (TRUE) { Semaphore readBlock=1l,writeBlock=1

<other computing>; writer () {
sem wait (readBlock); while (TRUE) ({
sem_wait (mutexl) ; <other computing>;
readCount++; sem wait (mutex2) ;
if (readCount == 1) writeCount++;

sem wait (writeBlock); if (writeCount == 1)
sem_signal (mutex1) ; sem wait (readBlock) ;
sem_signal (readBlock) ; sem;szgnal(muteXZ);

sem wait (writeBlock) ;

access (resource) ; access (resource) ;
sem_wait (mutexl) ; sem signal (writeBlock) ;
readCount--; sem wait (mutex2) ;
if (readCount == 0) writeCount--;

sem signal (writeBlock) if (writeCount == 0)
sem_signal (mutexl); sem signal (readBlock) ;

} sem signal (mutex2) ;

[Better R-W solution idea

ldea: serve requests in order

o Once a writer reguests access, any
entering readers have to block until the
writer is done

Advantage?
Disadvantage?

Copyright ©: University of lllinois CS 241 Staff

Reader-Writer: Fairer

int readCount = 0, writeCount = 0;

. 7 semaphore mutexl = 1, mutex2 = 1;
O utIOn semaphore readBlock = 1, writeBlock = 1, writePending = 1;
|

reader () { writer () {
while (TRUE) { while (TRUE) ({
<other computing>; <other computing>;
sem wait (writePending) ; sem wait (writePending) ;
sem wait (readBlock); sem wait (mutex2);
sem wait (mutexl); writeCount++;
readCount++; if (writeCount == 1)
if (readCount == 1) sem wait (readBlock);
sem wait (writeBlock); sem signal (mutex2) ;
sem signal (mutexl) ; sem wait (writeBlock);
sem signal (readBlock) ; access (resource) ;
sem signal (writePending) ; sem signal (writeBlock) ;
access (resource) ; sem signal (writePending) ;
sem wait (mutexl); sem wait (mutex2);
readCount--; writeCount--;
if (readCount == 0) if (writeCount == 0)
sem signal (writeBlock) ; sem signal (readBlock) ;

sem signal (mutexl); sem signal (mutex2) ;

[Summary

Classic synchronization problems
o Producer-Consumer Problem
o Reader-Writer Problem

Saved for next time:
o Sleeping Barber’'s Problem
o Dining Philosophers Problem

Copyright ©: University of lllinois CS 241 Staff

Dining Philosophers

N philosophers and N forks
o Philosophers eat/think

o Eating needs 2 forks

o Pick one fork at a time

7

Yty

Copyright ©: University of lllinois CS 241 Staff

