Synchronization

VU®

Copyright ©: University of lllinois CS 241 Staff

Synchronization

Problem: coordinating simultaneous access to
shared data

int cnt = 0;«—— Shared data

void * worker(void *ptr)

{
int i;
for (i = 0; i < ITERATIONS_PER_THREAD; i++)

} cnt++; — Critical section

(Just one line in this simple example)

Solution: mutually exclusive access to critical region
o Only one thread/process accesses shared data at a time

Copyright ©: University of lllinois CS 241 Staff 2]

Introducing: Critical Region
(Critical Section)

Process {
while (true) {

ENTER CRITICAL REGION What goes here?
Access shared variabl{gz::::::>
LEAVE CRITICAL REGION

Do other work

Copyright ©: University of lllinois CS 241 Staff

[Critical Region Requirements

Mutual Exclusion
o Safety

Progress
o No deadlock

Bounded Walit
o No starvation

Copyright ©: University of lllinois CS 241 Staff

Critical Regions

A enters critical region A leaves critical region

What mechanisms
do we need to be
able to achieve
mutual exclusion?

B is blocked

T,

Process A |
I | | |
l I Battemptsto I Benters | Bleaves
[I entercritical | critical I critical
I I /region I region I region
|

Process B |
|
|
T

A way to let B know that it

A way to block B

can proceed

Mutual exclusion using critical regions

Copyright ©: University of lllinois CS 241 Staff 5]

Mutual Exclusion Solutions

Software-only candidate solutions (Two-Process
Solutions)

Lock Variables

Turn Mutual Exclusion

Other Flag Mutual Exclusion

Two Flag Mutual Exclusion

Two Flag and Turn Mutual Exclusion

Hardware solutions
o Disabling Interrupts; Test-and-set; Swap (Exchange)

Semaphores

O O O O O

Copyright ©: University of lllinois CS 241 Staff

Lock Variables

while (lock) {

/* spin spin spin spin */
}
lock = 1;

/* EnterCriticalSection; */
access shared variable;
/* LeaveCriticalSection; */

lock = 0;

What's the problem?

Copyright ©: University of lllinois CS 241 Staff 7]

[Turn-based Mutual Exclusion

with Strict Alternation : i

~
a —

—

while (turn != my process id) ({
/* wait your turn */

}

access shared wvariables;

turn = other process id;

What's the problem?

Copyright ©: University of lllinois CS 241 Staff 10]

Other Flag Mutual Exclusion

int owner[2] = {false, false};

while (owner[other process id]) ({
/* wait your turn */
}

owner[my;process_id] = true;

access shared wvariables;

owner[my process id] = false;

What's the problem?

Copyright ©: University of lllinois CS 241 Staff 13]

Two Flag Mutual Exclusion

int owner[2] = {false, false};

owner [my process id] = true;
while (owner[other process id]) {
/* wait your turn */

}

access shared wvariables;

owner [my process id] = false;

What's the problem?

Copyright ©: University of lllinois CS 241 Staff 17]

Two Flag and Turn Mutual
Exclusion

int owner[2]={false, false};

int turn;

owner [my process id] = true;

turn = other process 1id;
while (owner[other process id] and
turn == other process id) {

/* wait your turn */

}

access shared wvariables;

owner [my process id] = false;

Copyright ©: University of lllinois CS 241 Staff

[Are we done?

Peterson’s algorithm works, but...

Problem: software solutions can be
slow

o at just the moment we’d like to be fast:
contention for shared resource

o Solution: hardware support

Copyright ©: University of lllinois CS 241 Staff

Test and Set Instruction 4.

boolean Test And Set (boolean* lock)
atomic {

boolean initial;
initial = *lock;
*lock = true;

return initial;

atomic = executed in a single shot
without any interruption

Copyright ©: University of lllinois CS 241 Staff

Using Test And_Set for
Mutual Exclusion

void main () {

P; { :
while (1) { § lock = 0;
while (Test And Set(lock)) ({ é parbegin (P,,..,P.) ;
} }
/* Critical Section */
lock =0;
/* remainder */
}
}

What's the problem?

Copyright ©: University of lllinois CS 241 Staff

Understanding Test and Set

boolean test and set(boolean* lock) atomic {
boolean initial = *lock;

Original *lock = true;

return initial;

boolean test and set(boolean* lock) atomic {
if (*lock == 1)

Functionally return 1; // failure
equivalent else {
*lock = 1;

// success

version return O;

Copyright ©: University of lllinois CS 241 Staff

Now are we done?

Hardware solutions are fast, but...

Problem: starvation
o No guarantee about which process “wins” the test-and-set race
o Itll eventually happen, but a process could wait indefinitely

Problem: deadlock

o Proc. 1 enters critical section, gets interrupted by higher priority Proc. 2
o P11 can’t make progress: waiting to run until P2 is done

o P2 can’t make progress: busy-waiting until P1 exits critical section

Problem: busy-waiting
o Critical section might be arbitrarily long
o Waiting processes all still spend CPU time!

These problems occur for software solutions too
Solution: Semaphores

Copyright ©: University of lllinois CS 241 Staff

=

[Semaphores /7/\

Fundamental Principle:

o Two or more processes want to
cooperate by means of simple signals

Special Variable: semaphore s

o A special kind of “int” variable

o Can’t just modify or set or increment or
decrement it

Copyright ©: University of lllinois CS 241 Staff

Semaphores for Mutual
Exclusion

Basic idea

o Associate a unique semaphore mutex with each
shared variable
Initially 1

o Surround corresponding critical sections
semWait (mutex)

semSignal (mutex)

Copyright ©: University of lllinois CS 241 Staff

Semaphore Terminology

Binary semaphore
o Value is always O or 1

Mutex

o Binary semaphore used for mutual exclusion
Wait operation: “locking” the mutex
Signal operation: “unlocking” or “releasing” the mutex

Counting semaphore
o Count a set of available resources
o Value starts at max

Copyright ©: University of lllinois CS 241 Staff

Semaphores /7/\

Before entering critical section
O semWait(s)
Receive signal via semaphore s
“down” on the semaphore
Also: P — proberen
After finishing critical section
O semSignal (s)
Transmit signal via semaphore s

“‘up” on the semaphore
Also: v — verhogen

Implementation requirements
o semSignal and semWait must be atomic

Copyright ©: University of lllinois CS 241 Staff

Semaphores vs. Test_and_Set

Semaphore Test_and_Set
semaphore s = 1; lock = 0;
P, { P, {
while (1) { while (1) {
semWait (s) ; while (Test And Set(lock));
semSignal (s) ; lock =0;
/* remainder */ /* remainder */

} }
Avoid busy waiting by suspending
o Blockif s == False
o Wakeup on signal (s = True)

Copyright ©: University of lllinois CS 241 Staff

Inside a Semaphore

Requirement

o No two processes can execute wait () and signal () on
the same semaphore at the same time!

Critical section
o wait() and signal () code

o Now have busy waiting in critical section implementation

Implementation code is short
Little busy waiting if critical section rarely occupied
Bad for applications may spend lots of time in critical sections

Copyright ©: University of lllinois CS 241 Staff

Inside a Semaphore

Add a waiting queue Semaphore data structure
Multiple process typedef struct ({
waiting on s int count;
o Wakeup one of the queueType queue;
blocked processes /* queue for procs.
upon getting a signal waiting on s */

} SEMAPHORE ;

Copyright ©: University of lllinois CS 241 Staff

Binary Semaphores

typedef struct bsemaphore ({
enum {0,1} wvalue;

queueType queue;
} BSEMAPHORE;

void semWaitB (bsemaphore s) {
if (s.value == 1)
s.value = 0;
else {
place P in s.queue;
block P;

void semSignalB (bsemaphore s)
{
if (s.queue is empty())
s.value = 1;
else {
remove P from s.queue;

place P on ready list;

}

Copyright ©: University of lllinois CS 241 Staff

1

General Semaphore

typedef struct {
int count;

queueType queue;
} SEMAPHORE;

void semWait (semaphore s) { void semSignal (semaphore s) {
s.count--; s.count++;
if (s.count < 0) { if (s.count £ 0) {
place P in s.queue; remove P from s.queue;

block P; place P on ready list;

Copyright ©: University of lllinois CS 241 Staff

Making the operations atomic

Isn’t this exactly what semaphores were trying to
solve? Are we stuck?!

Solution: resort to test-and-set

typedef struct {
boolean lock;
int count;

queueType queue;
} SEMAPHORE;

}

void semWait (semaphore s) ({

while (test _and set(lock)) { }

s.count--;
if (s.count < 0) {

place P in s.queue;
block P;

}
lock = O;

Copyright ©: University of lllinois CS 241 Staff

39

Making the operations atomic

Busy-waiting again! void semWait (semaphore s) ({
Th h while (test and set(lock)) { }
en now are

s.count--;
semqphoreg better if (s.count < 0) {
than just using place P in s.queue;
test_ and_set? block P;

}

lock = 0;

}

T&S: busy-wait during critical section

Sem.: busy-wait just during semWait, semSignal:
very short operations!

Copyright ©: University of lllinois CS 241 Staff 40]

Mutual Exclusion Using
Semaphores

semaphore s = 1;
P. {
while (1) {
semWait (s) ;
/* Critical Section */
semSignal (s) ;

/* remainder */

Copyright ©: University of lllinois CS 241 Staff

Process Process Critical Region
Value of B
Queue Semaphore A l Normal Execution
1OCk | Blocked on
semaphore
1| semWait(lock) lock
0]
semWait (lock)
I
-1 l

semSignal (lock)

l

semSignal (lock)

Copyright ©: University of lllinois CS 241 Staff

|

42

Semaphore Example 1

semaphore s = 2; What happens?
P. {
while (1) {
semWait (s) ; When might this be
/* Cs */ desirable?

semSignal (s) ;

/* remainder */

Copyright ©: University of lllinois CS 241 Staff

Semaphore Example 2

semaphore s = 0; What happens?
P. {
while (1) {
semWait (s) ; When might this be
/* Cs */ desirable?

semSignal (s) ;

/* remainder */

Copyright ©: University of lllinois CS 241 Staff

Semaphore Example 3

semaphore s = 0; semaphore s; /* shared */
Pl { P2 {

/* do some stuff */ /* do some stuff */

semWait (s) ; semSignal (s) ;

/* do some more stuff */ /* do some more stuff */
} }

What happens?

When might this be desirable?

Copyright ©: University of lllinois CS 241 Staff

Semaphore Example 4

Process 1 executes: Process 2 executes:
while (1) { while (1) {
semWait (S) ; semWait (Q) ;
a; b;
semSignal (Q) ; semSignal (S) ;

} }

Two processes
two semaphores: S and Q
Protect two critical variables ‘a’ and ‘b’.

What happens in the pseudocode if Semaphores S and
Q are initialized to 1 (or 0)?

Copyright ©: University of lllinois CS 241 Staff 52]

Summary

Synchronization is important for correct
multi-threading programs

Critical regions

Solutions to protect critical regions
o Software-only approaches

o Other hardware solutions

o Semaphores

Copyright ©: University of lllinois CS 241 Staff

