
Synchronization

Copyright ©: University of Illinois CS 241 Staff 1

Synchronization

 Problem: coordinating simultaneous access to

shared data

 Solution: mutually exclusive access to critical region

 Only one thread/process accesses shared data at a time

Copyright ©: University of Illinois CS 241 Staff 2

int cnt = 0;

void * worker(void *ptr)

{

 int i;

 for (i = 0; i < ITERATIONS_PER_THREAD; i++)

 cnt++;

}
Critical section

(just one line in this simple example)

Shared data

Introducing: Critical Region

(Critical Section)

Process {

 while (true) {

 ENTER CRITICAL REGION

 Access shared variables;

 LEAVE CRITICAL REGION

 Do other work

 }

}

3 Copyright ©: University of Illinois CS 241 Staff

What goes here?

Critical Region Requirements

 Mutual Exclusion

 Safety

 Progress

 No deadlock

 Bounded Wait

 No starvation

Copyright ©: University of Illinois CS 241 Staff 4

Critical Regions

Copyright ©: University of Illinois CS 241 Staff 5

Mutual exclusion using critical regions

Process A

Process B

A enters critical region A leaves critical region

B attempts to

enter critical

region

B enters

critical

region

B leaves

critical

region

T1 T2 T3 T4

B is blocked
What mechanisms

do we need to be

able to achieve

mutual exclusion?
A way to block B

A way to let B know that it

can proceed

Mutual Exclusion Solutions

 Software-only candidate solutions (Two-Process

Solutions)

 Lock Variables

 Turn Mutual Exclusion

 Other Flag Mutual Exclusion

 Two Flag Mutual Exclusion

 Two Flag and Turn Mutual Exclusion

 Hardware solutions

 Disabling Interrupts; Test-and-set; Swap (Exchange)

 Semaphores

Copyright ©: University of Illinois CS 241 Staff 6

Lock Variables

...

while (lock) {

 /* spin spin spin spin */

}

lock = 1;

/* EnterCriticalSection; */

access shared variable;

/* LeaveCriticalSection; */

lock = 0;

...

What's the problem?
7 Copyright ©: University of Illinois CS 241 Staff

Turn-based Mutual Exclusion

with Strict Alternation

…
while (turn != my_process_id) {

 /* wait your turn */

}

access shared variables;

turn = other_process_id;

…

What's the problem?
10 Copyright ©: University of Illinois CS 241 Staff

Other Flag Mutual Exclusion

int owner[2] = {false, false};

…

while (owner[other_process_id]) {

 /* wait your turn */

}

owner[my_process_id] = true;

access shared variables;

owner[my_process_id] = false;

…

What's the problem?
13 Copyright ©: University of Illinois CS 241 Staff

Two Flag Mutual Exclusion

int owner[2] = {false, false};

…

owner[my_process_id] = true;

while (owner[other_process_id]) {

 /* wait your turn */

}

access shared variables;

owner[my_process_id] = false;

…

What's the problem?
17 Copyright ©: University of Illinois CS 241 Staff

Two Flag and Turn Mutual
Exclusion

int owner[2]={false, false};

int turn;

…

owner[my_process_id] = true;

turn = other_process_id;

while (owner[other_process_id] and

 turn == other_process_id) {

 /* wait your turn */

}

access shared variables;

owner[my_process_id] = false;

…

20 Copyright ©: University of Illinois CS 241 Staff

Are we done?

 Peterson’s algorithm works, but...

 Problem: software solutions can be

slow

 at just the moment we’d like to be fast:

contention for shared resource

 Solution: hardware support

Copyright ©: University of Illinois CS 241 Staff 22

Test and Set Instruction

boolean Test_And_Set(boolean* lock)

atomic {

 boolean initial;

 initial = *lock;

 *lock = true;

 return initial;

}

atomic = executed in a single shot

 without any interruption

25 Copyright ©: University of Illinois CS 241 Staff

Using Test_And_Set for

Mutual Exclusion

Pi {

 while(1) {

 while(Test_And_Set(lock)) {

 }

 /* Critical Section */

 lock =0;

 /* remainder */

 }

}

void main () {

 lock = 0;

 parbegin(P1,…,Pn);

}

26

What's the problem?

Copyright ©: University of Illinois CS 241 Staff

Understanding Test and Set

Copyright ©: University of Illinois CS 241 Staff 28

boolean test_and_set(boolean* lock) atomic {

 boolean initial = *lock;

 *lock = true;

 return initial;

}

boolean test_and_set(boolean* lock) atomic {

 if (*lock == 1)

 return 1; // failure

 else {

 *lock = 1;

 return 0; // success

 }

}

Original

Functionally

equivalent

version

Now are we done?

 Hardware solutions are fast, but...

 Problem: starvation

 No guarantee about which process “wins” the test-and-set race

 It’ll eventually happen, but a process could wait indefinitely

 Problem: deadlock

 Proc. 1 enters critical section, gets interrupted by higher priority Proc. 2

 P1 can’t make progress: waiting to run until P2 is done

 P2 can’t make progress: busy-waiting until P1 exits critical section

 Problem: busy-waiting

 Critical section might be arbitrarily long

 Waiting processes all still spend CPU time!

 These problems occur for software solutions too

 Solution: Semaphores

Copyright ©: University of Illinois CS 241 Staff 29

Semaphores

 Fundamental Principle:

 Two or more processes want to

cooperate by means of simple signals

 Special Variable: semaphore s

 A special kind of “int” variable

 Can’t just modify or set or increment or

decrement it

30 Copyright ©: University of Illinois CS 241 Staff

Semaphores for Mutual

Exclusion

 Basic idea

 Associate a unique semaphore mutex with each

shared variable

 Initially 1

 Surround corresponding critical sections
 semWait(mutex)

 semSignal(mutex)

Copyright ©: University of Illinois CS 241 Staff 31

Semaphore Terminology

 Binary semaphore

 Value is always 0 or 1

 Mutex

 Binary semaphore used for mutual exclusion

 Wait operation: “locking” the mutex

 Signal operation: “unlocking” or “releasing” the mutex

 Counting semaphore

 Count a set of available resources

 Value starts at max

Copyright ©: University of Illinois CS 241 Staff 32

Semaphores

 Before entering critical section

 semWait(s)

 Receive signal via semaphore s

 “down” on the semaphore

 Also: P – proberen

 After finishing critical section

 semSignal(s)

 Transmit signal via semaphore s

 “up” on the semaphore

 Also: V – verhogen

 Implementation requirements

 semSignal and semWait must be atomic
33 Copyright ©: University of Illinois CS 241 Staff

Semaphores vs. Test_and_Set

Semaphore

semaphore s = 1;

Pi {

 while(1) {

 semWait(s);

 /* Critical Section */

 semSignal(s);

 /* remainder */

 }

}

Test_and_Set

lock = 0;

Pi {

 while(1) {

 while(Test_And_Set(lock));

 /* Critical Section */

 lock =0;

 /* remainder */

 }

}

34 Copyright ©: University of Illinois CS 241 Staff

 Avoid busy waiting by suspending

 Block if s == False

 Wakeup on signal (s = True)

Inside a Semaphore

 Requirement

 No two processes can execute wait() and signal() on

the same semaphore at the same time!

 Critical section

 wait() and signal() code

 Now have busy waiting in critical section implementation

 Implementation code is short

 Little busy waiting if critical section rarely occupied

 Bad for applications may spend lots of time in critical sections

Copyright ©: University of Illinois CS 241 Staff 35

Inside a Semaphore

 Add a waiting queue

 Multiple process
waiting on s

 Wakeup one of the

blocked processes

upon getting a signal

 Semaphore data structure
typedef struct {

 int count;

 queueType queue;

 /* queue for procs.

waiting on s */

} SEMAPHORE;

36 Copyright ©: University of Illinois CS 241 Staff

Binary Semaphores

typedef struct bsemaphore {

 enum {0,1} value;

 queueType queue;

 } BSEMAPHORE;

void semSignalB (bsemaphore s)

{

 if (s.queue is empty())

 s.value = 1;

 else {

 remove P from s.queue;

 place P on ready list;

 }

}

void semWaitB(bsemaphore s) {

 if (s.value == 1)

 s.value = 0;

 else {

 place P in s.queue;

 block P;

 }

}

37 Copyright ©: University of Illinois CS 241 Staff

General Semaphore

typedef struct {

 int count;

 queueType queue;

} SEMAPHORE;

void semSignal(semaphore s) {

 s.count++;

 if (s.count ≤ 0) {

 remove P from s.queue;

 place P on ready list;

 }

}

void semWait(semaphore s) {

 s.count--;

 if (s.count < 0) {

 place P in s.queue;

 block P;

 }

}

38 Copyright ©: University of Illinois CS 241 Staff

Making the operations atomic

 Isn’t this exactly what semaphores were trying to

solve? Are we stuck?!

 Solution: resort to test-and-set

39

typedef struct {

 boolean lock;

 int count;

 queueType queue;

} SEMAPHORE;

void semWait(semaphore s) {

 while (test_and_set(lock)) { }

 s.count--;

 if (s.count < 0) {

 place P in s.queue;

 block P;

 }

 lock = 0;

}

Copyright ©: University of Illinois CS 241 Staff

Making the operations atomic

 Busy-waiting again!

 Then how are

semaphores better

than just using

test_and_set?

40

void semWait(semaphore s) {

 while (test_and_set(lock)) { }

 s.count--;

 if (s.count < 0) {

 place P in s.queue;

 block P;

 }

 lock = 0;

}

 T&S: busy-wait during critical section

 Sem.: busy-wait just during semWait, semSignal:

very short operations!
Copyright ©: University of Illinois CS 241 Staff

Mutual Exclusion Using

Semaphores

semaphore s = 1;

Pi {

 while(1) {

 semWait(s);

 /* Critical Section */

 semSignal(s);

 /* remainder */

 }

}

41 Copyright ©: University of Illinois CS 241 Staff

Value of

Semaphore
lock

Queue A

semWait(lock)

0

1

semWait(lock)

B

-1
semSignal(lock)

0

semSignal(lock)

1

Process Process Critical Region

Normal Execution

Blocked on

semaphore

lock

B

42 Copyright ©: University of Illinois CS 241 Staff

Semaphore Example 1

semaphore s = 2;

Pi {

 while(1) {

 semWait(s);

 /* CS */

 semSignal(s);

 /* remainder */

 }

}

 What happens?

 When might this be

desirable?

43 Copyright ©: University of Illinois CS 241 Staff

Semaphore Example 2

semaphore s = 0;

Pi {

 while(1) {

 semWait(s);

 /* CS */

 semSignal(s);

 /* remainder */

 }

}

 What happens?

 When might this be

desirable?

46 Copyright ©: University of Illinois CS 241 Staff

Semaphore Example 3

semaphore s = 0;

P1 {

 /* do some stuff */

 semWait(s);

 /* do some more stuff */

}

semaphore s; /* shared */

P2 {

 /* do some stuff */

 semSignal(s);

 /* do some more stuff */

}

 What happens?

 When might this be desirable?

49 Copyright ©: University of Illinois CS 241 Staff

Semaphore Example 4

Process 1 executes:

 while(1) {

 semWait(S);

 a;

 semSignal(Q);

 }

Process 2 executes:

 while(1) {

 semWait(Q);

 b;

 semSignal(S);

 }

 Two processes

 two semaphores: S and Q

 Protect two critical variables ‘a’ and ‘b’.

 What happens in the pseudocode if Semaphores S and

Q are initialized to 1 (or 0)?
52 Copyright ©: University of Illinois CS 241 Staff

Summary

 Synchronization is important for correct

multi-threading programs

 Critical regions

 Solutions to protect critical regions

 Software-only approaches

 Other hardware solutions

 Semaphores

Copyright ©: University of Illinois CS 241 Staff 53

