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Synchronization 

 Problem: coordinating simultaneous access to 

shared data 

 

 

 

 

 
 

 Solution: mutually exclusive access to critical region 

 Only one thread/process accesses shared data at a time 
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int cnt = 0; 

 

void * worker( void *ptr ) 

{ 

    int i; 

    for (i = 0; i < ITERATIONS_PER_THREAD; i++) 

        cnt++; 

} 
Critical section 

(just one line in this simple example) 

Shared data 



Introducing: Critical Region 

(Critical Section) 

Process {  

 while (true) {  

  ENTER CRITICAL REGION 

  Access shared variables;  

  LEAVE CRITICAL REGION 

  Do other work  

 }  

}  
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What goes here? 



Critical Region Requirements 

 Mutual Exclusion 

 Safety 

 Progress 

 No deadlock 

 Bounded Wait 

 No starvation 
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Critical Regions 
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Mutual exclusion using critical regions 

Process A 

Process B 

A enters critical region A leaves critical region 

B attempts to 

enter critical 

region 

B enters 

critical 

region 

B leaves 

critical 

region 

T1 T2 T3 T4 

B is blocked 
What mechanisms 

do we need to be 

able to achieve 

mutual exclusion? 
A way to block B 

A way to let B know that it 

can proceed 



Mutual Exclusion Solutions 

 Software-only candidate solutions (Two-Process 

Solutions) 

 Lock Variables 

 Turn Mutual Exclusion 

 Other Flag Mutual Exclusion 

 Two Flag Mutual Exclusion 

 Two Flag and Turn Mutual Exclusion 

 Hardware solutions 

 Disabling Interrupts; Test-and-set; Swap (Exchange) 

 Semaphores 
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Lock Variables 

... 

while (lock) { 

 /* spin spin spin spin */ 

} 

lock = 1; 

/* EnterCriticalSection; */ 

access shared variable; 

/* LeaveCriticalSection; */ 

lock = 0; 

... 

What's the problem? 
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Turn-based Mutual Exclusion 

with Strict Alternation 

… 
while (turn != my_process_id) { 

 /* wait your turn */ 

} 

access shared variables; 

turn = other_process_id; 

… 

What's the problem? 
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Other Flag Mutual Exclusion 

int owner[2] = {false, false}; 

… 

while (owner[other_process_id]) { 

  /* wait your turn */ 

} 

owner[my_process_id] = true; 

access shared variables; 

owner[my_process_id] = false; 

… 

What's the problem? 
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Two Flag Mutual Exclusion 

int owner[2] = {false, false}; 

… 

owner[my_process_id] = true; 

while (owner[other_process_id]) { 

  /* wait your turn */  

} 

access shared variables; 

owner[my_process_id] = false; 

… 

What's the problem? 
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Two Flag and Turn Mutual 
Exclusion 

int owner[2]={false, false}; 

int turn; 

… 

owner[my_process_id] = true; 

turn = other_process_id; 

while (owner[other_process_id] and  

     turn == other_process_id) {  

  /* wait your turn */  

} 

access shared variables; 

owner[my_process_id] = false; 

… 
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Are we done? 

 Peterson’s algorithm works, but... 

 Problem: software solutions can be 

slow 

 at just the moment we’d like to be fast: 

contention for shared resource 

 Solution: hardware support 
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Test and Set Instruction 

boolean Test_And_Set(boolean* lock) 

atomic { 

 boolean initial; 

 initial = *lock; 

 *lock = true; 

 return initial; 

} 

 
atomic = executed in a single shot  

     without any interruption 
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Using Test_And_Set for 

Mutual Exclusion 

Pi { 

 while(1) {

 while(Test_And_Set(lock)) { 

      

  } 

 

  /* Critical Section */  

  lock =0;  

  /* remainder */ 

 }  

} 

 

void main () { 

 lock = 0;  

 parbegin(P1,…,Pn); 

} 
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What's the problem? 
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Understanding Test and Set 
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boolean test_and_set(boolean* lock) atomic { 

    boolean initial = *lock; 

    *lock = true; 

    return initial; 

} 

 

boolean test_and_set(boolean* lock) atomic { 

    if (*lock == 1) 

        return 1; // failure 

    else { 

        *lock = 1; 

        return 0; // success 

    } 

} 

 

Original 

Functionally 

equivalent 

version 



Now are we done? 

 Hardware solutions are fast, but... 

 Problem: starvation 

 No guarantee about which process “wins” the test-and-set race 

 It’ll eventually happen, but a process could wait indefinitely 

 Problem: deadlock 

 Proc. 1 enters critical section, gets interrupted by higher priority Proc. 2 

 P1 can’t make progress: waiting to run until P2 is done 

 P2 can’t make progress: busy-waiting until P1 exits critical section 

 Problem: busy-waiting 

 Critical section might be arbitrarily long 

 Waiting processes all still spend CPU time! 

 These problems occur for software solutions too 

 Solution: Semaphores 
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Semaphores 

 Fundamental Principle:  

 Two or more processes want to 

cooperate by means of simple signals 

 Special Variable: semaphore s  

 A special kind of “int” variable  

 Can’t just modify or set or increment or 

decrement it 
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Semaphores for Mutual 

Exclusion 

 Basic idea 

 Associate a unique semaphore mutex with each 

shared variable  

 Initially 1 

 Surround corresponding critical sections  
 semWait(mutex) 

 semSignal(mutex) 
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Semaphore Terminology 

 Binary semaphore 

 Value is always 0 or 1 

 Mutex 

 Binary semaphore used for mutual exclusion 

 Wait operation: “locking” the mutex 

 Signal operation: “unlocking” or “releasing” the mutex 

  Counting semaphore 

 Count a set of available resources 

 Value starts at max 
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Semaphores 

 Before entering critical section  

 semWait(s) 

 Receive signal via semaphore s 

 “down” on the semaphore 

 Also: P – proberen 

 After finishing critical section 

 semSignal(s) 

 Transmit signal via semaphore s 

 “up” on the semaphore 

 Also: V – verhogen 

 Implementation requirements 

 semSignal and semWait must be atomic 
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Semaphores vs. Test_and_Set 

Semaphore 

semaphore s = 1;  

Pi { 

 while(1)  {  

  semWait(s);  

  /* Critical Section */ 

  semSignal(s); 

  /* remainder */ 

 } 

} 

Test_and_Set 

lock = 0; 

Pi { 

 while(1) {

 while(Test_And_Set(lock)); 

  /* Critical Section */  

  lock =0;  

  /* remainder */ 

 }  

} 
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 Avoid busy waiting by suspending 

 Block if  s == False 

 Wakeup on signal (s = True) 



Inside a Semaphore 

 Requirement 

 No two processes can execute wait() and signal() on 

the same semaphore at the same time! 

 

 Critical section  

 wait() and signal() code 

 Now have busy waiting in critical section implementation 

 Implementation code is short 

 Little busy waiting if critical section rarely occupied 

 Bad for applications may spend lots of time in critical sections 
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Inside a Semaphore 

 Add a waiting queue 

 Multiple process 
waiting on s 

 Wakeup one of the 

blocked processes 

upon getting a signal 

 Semaphore data structure 
typedef struct { 

 int count; 

 queueType queue;  

 /* queue for procs. 

waiting on s */ 

} SEMAPHORE; 
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Binary Semaphores 

typedef struct bsemaphore { 

 enum {0,1} value; 

 queueType queue;  

 } BSEMAPHORE; 

void semSignalB (bsemaphore s) 

{ 

 if (s.queue is empty()) 

  s.value = 1; 

 else { 

  remove P from s.queue; 

  place P on ready list;  

 } 

} 

  

void semWaitB(bsemaphore s) { 

 if (s.value == 1) 

  s.value = 0; 

 else {  

  place P in s.queue; 

  block P; 

 } 

}  
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General Semaphore 

typedef struct { 

 int count; 

  queueType queue;  

} SEMAPHORE; 

void semSignal(semaphore s) { 

 s.count++; 

 if (s.count ≤ 0) { 

  remove P from s.queue; 

  place P on ready list;  

 } 

}    

void semWait(semaphore s) { 

 s.count--; 

  if (s.count < 0) { 

  place P in s.queue; 

  block P; 

 } 

} 
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Making the operations atomic 

 Isn’t this exactly what semaphores were trying to 

solve?  Are we stuck?! 

 Solution: resort to test-and-set 
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typedef struct { 

  boolean lock; 

  int count; 

  queueType queue;  

} SEMAPHORE; 

void semWait(semaphore s) { 

  while (test_and_set(lock)) { } 

  s.count--; 

  if (s.count < 0) { 

    place P in s.queue; 

    block P; 

  } 

  lock = 0; 

} 
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Making the operations atomic 

 Busy-waiting again! 

 Then how are 

semaphores better 

than just using 

test_and_set? 
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void semWait(semaphore s) { 

  while (test_and_set(lock)) { } 

  s.count--; 

  if (s.count < 0) { 

    place P in s.queue; 

    block P; 

  } 

  lock = 0; 

} 

 T&S: busy-wait during critical section 

 Sem.: busy-wait just during semWait, semSignal: 

very short operations! 
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Mutual Exclusion Using 

Semaphores 

semaphore s = 1;  

Pi { 

 while(1)  {  

  semWait(s);  

  /* Critical Section */ 

  semSignal(s); 

  /* remainder */ 

 } 

} 
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Value of  

Semaphore 
lock 

Queue A 

semWait(lock) 

0 

1 

semWait(lock) 

B 

-1 
semSignal(lock) 

0 

semSignal(lock) 

1 

Process Process  Critical Region 

Normal Execution 

Blocked on 

semaphore  

lock 

B 
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Semaphore Example 1 

semaphore s = 2;  

Pi { 

 while(1)  {  

  semWait(s);  

  /* CS */ 

  semSignal(s); 

  /* remainder */ 

 } 

} 

 What happens? 

 

 

 When might this be 

desirable? 
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Semaphore Example 2 

semaphore s = 0;  

Pi { 

 while(1)  {  

  semWait(s);  

  /* CS */ 

  semSignal(s); 

  /* remainder */ 

 } 

} 

 What happens? 

 

 

 When might this be 

desirable? 
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Semaphore Example 3 

semaphore s = 0;  

P1 { 

 /* do some stuff */ 

 semWait(s);  

 /* do some more stuff */ 

} 

semaphore s; /* shared */ 

P2 { 

 /* do some stuff */ 

 semSignal(s);  

 /* do some more stuff */ 

} 

 What happens? 

 

 

 When might this be desirable? 
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Semaphore Example 4 

Process 1 executes: 

 while(1) { 

  semWait(S); 

  a; 

  semSignal(Q);  

 } 

Process 2 executes: 

 while(1) { 

  semWait(Q); 

  b; 

  semSignal(S);  

 } 

 Two processes  

 two semaphores: S and Q  

 Protect two critical variables ‘a’ and ‘b’.  

 What happens in the pseudocode if Semaphores S and 

Q are initialized to 1 (or 0)? 
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Summary 

 Synchronization is important for correct 

multi-threading programs 

 Critical regions 

 Solutions to protect critical regions 

 Software-only approaches 

 Other hardware solutions  

 Semaphores 
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