
Copyright ©: University of Illinois CS 241 Staff 1

Introduction to Synchronization

Overview

 Introduction to synchronization

 Why do we need synchronization?

 Solution: Critical Regions

 How to implement a Critical Region

inconveniently

2 Copyright ©: University of Illinois CS 241 Staff

Playing together is not easy

 Easy to share data among threads

 But, not always so easy to do it correctly...

 Easy case: one obvious “owner”

 e.g., main() creates arguments, hands off to child thread

 child now owns it, no one else will never read or write it

 What if threads need to work together? e.g., in web

server

 multiple threads concurrently access cache of files in

memory, occasionally adding or removing

 multiple threads concurrently update count of total #

clients

Copyright ©: University of Illinois CS 241 Staff 3

Do threads conflict in practice?

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <assert.h>

int cnt = 0;

void * worker(void *ptr) {

 int i;

 for (i = 0;

 i < 50000; i++)

 cnt++;

}

#define NUM_THREADS 2

int main(void) {

 pthread_t threads[NUM_THREADS];

 int i, res;

 for (i = 0; i < NUM_THREADS; i++) {

 res = pthread_create(&threads[i],

 NULL, worker, NULL);

 }

 for (i = 0; i < NUM_THREADS; i++) {

 res = pthread_join(threads[i], NULL);

 }

 /* Print result */

 printf("Final value: %d\n", cnt);

}

 Copyright ©: University of Illinois CS 241 Staff 4

Do threads conflict in practice?

 If everything worked...
 $./20-counter

 Final value: 100000

 Q: What are the minimum and

maximum final value?

 Q: What value do you expect in

practice?

Copyright ©: University of Illinois CS 241 Staff 5

What’s yours is mine …

Copyright ©: University of Illinois CS 241 Staff 7

Shared state:

queue_t q; /* to do list */

Producer thread:

while (true) {

 Create new work W;

 Find tail of q;

 tail = W;

}

Consumer thread:

while (true) {

 work = head of q;

 remove head from q;

 do_work(work);

}

Can We Share?

Copyright ©: University of Illinois CS 241 Staff 8

Producer thread:

while (true) {

 Create new work W;

 Find tail of q;

 tail = W;

}

Consumer thread:

while (true) {

 work = head of q;

 remove head from q;

 do_work(work);

}

0

work Open

bottle

next NULL

q.head

Can We Share?

Copyright ©: University of Illinois CS 241 Staff 9

Producer thread:

while (true) {

 Create new work W;

 Find tail of q;

 tail = W;

}

Consumer thread:

while (true) {

 work = head of q;

 remove head from q;

 do_work(work);

}

3

1
5

0

6

5

4

3

2

1

work Open

bottle

next NULL

work Drink

water

next NULL

q.head


2

work Open

bottle

next NULL

work Open

bottle

next NULL

Something went horribly

wrong …

Copyright ©: University of Illinois CS 241 Staff 10

Producer thread:

while (true) {

 Create new work W;

 Find tail of q;

 tail = W;

}

Consumer thread:

while (true) {

 work = head of q;

 remove head from q;

 do_work(work);

}

6

1

4

0

6 5

4

3
2

1

work Drink

water

next NULL

q.head




I’ll never get to drink my water!

NULL

2

A Simpler Example

 We just saw that processes / threads

can be preempted at arbitrary times

 The previous example might work, or not

 What if we just use simple operations?

Copyright ©: University of Illinois CS 241 Staff 11

Thread 1:

x++;

Thread 2:

x++;

Shared state:

int x=0;

Are we safe now?

Incrementing Variables

 How is x++ implemented?

 register1 = x

 register1 = register1 + 1

 x = register1

Copyright ©: University of Illinois CS 241 Staff 12

13 Copyright ©: University of Illinois CS 241 Staff

What could happen?

Thread 1: x++; Thread 2: x++; r1 r2 x

x++: r1 = x

 r1 = r1 + 1

 x = r1

Producer/Consumer Problem

 Producer process "produces" information

 Consumer process "consumes" produced information

 Challenge: Bounded Buffer

 Buffer has max capacity N

 Producer can only add if buffer has room (i.e., count < N)

 Consumer can only remove if buffer has item (i.e., count > 0)

Copyright ©: University of Illinois CS 241 Staff 26

Producer Consumer N = 4

2 empty slots 2 occupied slots

Producer/Consumer Problem

Copyright ©: University of Illinois CS 241 Staff 27

Producer Consumer N = 4

2 empty slots 2 occupied slots

Producer thread:

while (true) {

 Create new work W;

 Find tail of q;

 tail = W;

}

Consumer thread:

while (true) {

 work = head of q;

 remove head from q;

 do_work(work);

}

Producer/Consumer Problem

Copyright ©: University of Illinois CS 241 Staff 28

Producers Consumers

N = 4

2 empty slots 2 occupied slots

Producer threads:

while (true) {

 Create new work W;

 Find tail of q;

 tail = W;

}

Consumer threads:

while (true) {

 work = head of q;

 remove head from q;

 do_work(work);

}
What happens with
multiple producers
and consumers?

Multiple Producers:
Shared Queue

4

5

6

7
…

…

in
my_next_free = in; my_next_free = in

Store NEW into
my_next_free;

Store NEW into
my_next_free;

in=my_next_free+1 in=my_next_free+1

Shared memory Process 1 Process 2

int my_next_free;
int my_next_free;

29 Copyright ©: University of Illinois CS 241 Staff

Multiple Producers:
Shared Queue: Correct

abc

def

ghi

4

5

6

7

mno
…

…

in

1

2

4

jkl 3

5

6

Shared memory Process 1 Process 2

int my_next_free;
int my_next_free;

30 Copyright ©: University of Illinois CS 241 Staff

my_next_free = in;

Store jkl into
my_next_free;

in=my_next_free+1

my_next_free = in

Store mno into
my_next_free;

in=my_next_free+1

jlk mno

Multiple Producers:
Example: Problem

Shared memory

abc

def

ghi

4

5

6

7
…

…

in

Process 1 Process 2

int my_next_free;
int my_next_free;

1

3

2

4

5

6

31 Copyright ©: University of Illinois CS 241 Staff

my_next_free = in;

Store jkl into
my_next_free;

in=my_next_free+1

my_next_free = in

Store mno into
my_next_free;

in=my_next_free+1

Introducing: Critical Region

(Critical Section)

Process {

 while (true) {

 Access shared variables;

 Do other work

 }

}
32 Copyright ©: University of Illinois CS 241 Staff

Introducing: Critical Region

(Critical Section)

Process {

 while (true) {

 ENTER CRITICAL REGION

 Access shared variables;

 LEAVE CRITICAL REGION

 Do other work

 }

}
33 Copyright ©: University of Illinois CS 241 Staff

34 Copyright ©: University of Illinois CS 241 Staff

Critical Region Requirements

 Mutual Exclusion

 Progress

 Bounded Wait

Copyright ©: University of Illinois CS 241 Staff 35

Mutual Exclusion

36 Copyright ©: University of Illinois CS 241 Staff

Hmm, are there

door locks?

Critical Region Requirements

 Mutual Exclusion

 At most one process in critical region

 No other process may execute within the

critical region while a process is in it

 Safety

 Progress

 Bounded Wait

Copyright ©: University of Illinois CS 241 Staff 37

Mutual Exclusion

38 Copyright ©: University of Illinois CS 241 Staff

Hmm, are there

door locks?

Progress

Did you
see anybody

go in?

Critical Region Requirements

 Mutual Exclusion

 Progress

 If no process is waiting in its critical

region and several processes are trying

to get into their critical section, then one

of the waiting processes should be able

to enter the critical region

 Liveness – no deadlocks

 Bounded Wait
Copyright ©: University of Illinois CS 241 Staff 39

Mutual Exclusion

40 Copyright ©: University of Illinois CS 241 Staff

Hmm, are there

door locks?

Progress Bounded Wait

Did you
see anybody

go in?

I can’t wait
forever!

Critical Region Requirements

 Mutual Exclusion

 Progress

 Bounded Wait

 A process requesting entry to a critical

section should only have to wait for a

bounded number of other processes to

enter and leave the critical region

 Liveness – no starvation

Copyright ©: University of Illinois CS 241 Staff 41

Critical Region Requirements

 Mutual Exclusion

 Progress

 Bounded Wait

Copyright ©: University of Illinois CS 241 Staff 42

Must ensure these requirements without

assumptions about number of CPUs,

speeds of the threads, or scheduling!

Critical Regions

Mutual exclusion using critical regions

Process A

Process B

A enters critical region A leaves critical region

B attempts to

enter critical

region

B enters

critical

region

B leaves

critical

region

T1 T2 T3 T4

B is blocked

43 Copyright ©: University of Illinois CS 241 Staff

What mechanisms

do we need to be

able to achieve

mutual exclusion?

Critical Regions

Mutual exclusion using critical regions

Process A

Process B

A enters critical region A leaves critical region

B attempts to

enter critical

region

B enters

critical

region

B leaves

critical

region

T1 T2 T3 T4

B is blocked

44 Copyright ©: University of Illinois CS 241 Staff

What mechanisms

do we need to be

able to achieve

mutual exclusion?
A way to block B

A way to let B know that it

can proceed

Summary

 Synchronization is important for correct

multi-threading programs

 Race conditions

 Critical regions

 What’s next: protecting critical regions

 Software-only approaches

 Semaphores

 Other hardware solutions

Copyright ©: University of Illinois CS 241 Staff 45

