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Introduction to Synchronization 



Overview 

 Introduction to synchronization 

 

 Why do we need synchronization? 

 

 Solution: Critical Regions 

 

 How to implement a Critical Region 

inconveniently 
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Playing together is not easy 

 Easy to share data among threads 

 But, not always so easy to do it correctly... 

 Easy case: one obvious “owner” 

 e.g., main() creates arguments, hands off to child thread 

 child now owns it, no one else will never read or write it 

 What if threads need to work together? e.g., in web 

server 

 multiple threads concurrently access cache of files in 

memory, occasionally adding or removing 

 multiple threads concurrently update count of total # 

clients 
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Do threads conflict in practice? 

#include <stdio.h> 

#include <stdlib.h> 

#include <pthread.h> 

#include <assert.h> 

 

 

int cnt = 0; 

 

void * worker( void *ptr ) { 

   int i; 

   for (i = 0;  

        i < 50000; i++) 

      cnt++; 

} 

#define NUM_THREADS 2 

int main(void) { 

   pthread_t threads[NUM_THREADS]; 

   int i, res; 

 

   for (i = 0; i < NUM_THREADS; i++)  { 

      res = pthread_create(&threads[i], 

              NULL, worker, NULL); 

   } 

   for (i = 0; i < NUM_THREADS; i++) { 

      res = pthread_join(threads[i], NULL); 

   } 

    /* Print result */ 

    printf("Final value: %d\n", cnt); 

} 
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Do threads conflict in practice? 

 If everything worked... 
  $ ./20-counter  

  Final value: 100000 

 

 Q: What are the minimum and 

maximum final value? 

 Q: What value do you expect in 

practice? 
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What’s yours is mine … 
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Shared state: 

 
queue_t q; /* to do list */ 

Producer thread: 

 
while (true) { 

  Create new work W; 

  Find tail of q; 

  tail = W; 

} 

Consumer thread: 

 
while (true) { 

  work = head of q; 

  remove head from q; 

  do_work(work); 

} 



Can We Share? 
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Producer thread: 

 
while (true) { 

  Create new work W; 

  Find tail of q; 

  tail = W; 

} 

Consumer thread: 

 
while (true) { 

  work = head of q; 

  remove head from q; 

  do_work(work); 

} 

0 

work Open 

bottle 

next NULL 

q.head 



Can We Share? 
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Producer thread: 

 
while (true) { 

  Create new work W; 

  Find tail of q; 

  tail = W; 

} 

Consumer thread: 

 
while (true) { 

  work = head of q; 

  remove head from q; 

  do_work(work); 

} 

3 
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work Open 

bottle 

next NULL 

work Drink 

water 

next NULL 

q.head 

 
2 



work Open 

bottle 

next NULL 

work Open 

bottle 

next NULL 

Something went horribly 

wrong … 
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Producer thread: 

 
while (true) { 

  Create new work W; 

  Find tail of q; 

  tail = W; 

} 

Consumer thread: 

 
while (true) { 

  work = head of q; 

  remove head from q; 

  do_work(work); 

} 
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work Drink 

water 

next NULL 

q.head 

 
 

I’ll never get to drink my water! 

NULL 

2 



A Simpler Example 

 We just saw that processes / threads 

can be preempted at arbitrary times 

 The previous example might work, or not 

 What if we just use simple operations? 
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Thread 1: 

 
x++; 

Thread 2: 

 
x++; 

Shared state: 

 
int x=0; 

Are we safe now? 



Incrementing Variables 

 How is x++ implemented? 

  

 register1 = x 

 register1 = register1 + 1 

 x = register1 
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What could happen? 

Thread 1: x++; Thread 2: x++; r1 r2 x 

x++: r1 = x 

 r1 = r1 + 1 

 x = r1 



Producer/Consumer Problem 

 Producer process "produces" information  

 Consumer process "consumes" produced information 

 Challenge: Bounded Buffer 

 Buffer has max capacity N 

 Producer can only add if buffer has room (i.e., count < N) 

 Consumer can only remove if buffer has item (i.e., count > 0) 
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Producer Consumer N = 4 

2 empty slots 2 occupied slots 



Producer/Consumer Problem 
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Producer Consumer N = 4 

2 empty slots 2 occupied slots 

Producer thread: 
 

while (true) { 

  Create new work W; 

  Find tail of q; 

  tail = W; 

} 

Consumer thread: 
 

while (true) { 

  work = head of q; 

  remove head from q; 

  do_work(work); 

} 



Producer/Consumer Problem 
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Producers Consumers 

N = 4 

2 empty slots 2 occupied slots 

Producer threads: 
 

while (true) { 

  Create new work W; 

  Find tail of q; 

  tail = W; 

} 

Consumer threads: 
 

while (true) { 

  work = head of q; 

  remove head from q; 

  do_work(work); 

} 
What happens with 
multiple producers 
and consumers? 



Multiple Producers: 
Shared Queue 

4 

5 

6 

7 
…

 
…

 

in 
my_next_free = in; my_next_free = in 

Store NEW into  
my_next_free; 

Store NEW into  
my_next_free; 

in=my_next_free+1 in=my_next_free+1 

Shared memory Process 1 Process 2 

int my_next_free; 
int my_next_free; 
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Multiple Producers: 
Shared Queue: Correct 

abc 

def 

ghi 

4 

5 

6 

7 

mno 
…

 
…

 
in 

1 

2 

4 

jkl 3 

5 

6 

Shared memory Process 1 Process 2 

int my_next_free; 
int my_next_free; 
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my_next_free = in; 

Store jkl into  
my_next_free; 

in=my_next_free+1 

my_next_free = in 

Store mno into  
my_next_free; 

in=my_next_free+1 



jlk mno 

Multiple Producers:  
Example: Problem 

Shared memory 

abc 

def 

ghi 

4 

5 

6 

7 
…

 
…

 
in 

Process 1 Process 2 

int my_next_free; 
int my_next_free; 

1 

3 

2 

4 

5 

6 

31 Copyright ©: University of Illinois CS 241 Staff 

my_next_free = in; 

Store jkl into  
my_next_free; 

in=my_next_free+1 

my_next_free = in 

Store mno into  
my_next_free; 

in=my_next_free+1 



Introducing: Critical Region 

(Critical Section) 

Process {  

 while (true) {  

   

  Access shared variables;  

   

  Do other work  

 }  

}  
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Introducing: Critical Region 

(Critical Section) 

Process {  

 while (true) {  

  ENTER CRITICAL REGION 

  Access shared variables;  

  LEAVE CRITICAL REGION 

  Do other work  

 }  

}  
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Critical Region Requirements 

 Mutual Exclusion 

 Progress 

 Bounded Wait 
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Mutual Exclusion 
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Hmm, are there  

door locks? 



Critical Region Requirements 

 Mutual Exclusion 

 At most one process in critical region 

 No other process may execute within the 

critical region while a process is in it 

 Safety 

 Progress 

 Bounded Wait 
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Mutual Exclusion 
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Hmm, are there  

door locks? 

Progress 

Did you  
see anybody  

go in? 



Critical Region Requirements 

 Mutual Exclusion 

 Progress 

 If no process is waiting in its critical 

region and several processes are trying 

to get into their critical section, then one 

of the waiting processes should be able 

to enter the critical region 

 Liveness – no deadlocks 

 Bounded Wait 
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Mutual Exclusion 
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Hmm, are there  

door locks? 

Progress Bounded Wait 

Did you  
see anybody  

go in? 

I can’t wait  
forever! 



Critical Region Requirements 

 Mutual Exclusion 

 Progress 

 Bounded Wait 

 A process requesting entry to a critical 

section should only have to wait for a 

bounded number of other processes to 

enter and leave the critical region 

 Liveness – no starvation 
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Critical Region Requirements 

 Mutual Exclusion 

 Progress 

 Bounded Wait 
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Must ensure these requirements without 

assumptions about number of CPUs, 

speeds of the threads, or scheduling! 



Critical Regions 

Mutual exclusion using critical regions 

Process A 

Process B 

A enters critical region A leaves critical region 

B attempts to 

enter critical 

region 

B enters 

critical 

region 

B leaves 

critical 

region 

T1 T2 T3 T4 

B is blocked 
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What mechanisms 

do we need to be 

able to achieve 

mutual exclusion? 



Critical Regions 

Mutual exclusion using critical regions 

Process A 

Process B 

A enters critical region A leaves critical region 

B attempts to 

enter critical 

region 

B enters 

critical 

region 

B leaves 

critical 

region 

T1 T2 T3 T4 

B is blocked 
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What mechanisms 

do we need to be 

able to achieve 

mutual exclusion? 
A way to block B 

A way to let B know that it 

can proceed 



Summary 

 Synchronization is important for correct 

multi-threading programs 

 Race conditions 

 Critical regions 

 What’s next: protecting critical regions 

 Software-only approaches 

 Semaphores 

 Other hardware solutions  
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