
Process Scheduling

1 Copyright ©: University of Illinois CS 241 Staff

Process Scheduling

 Deciding which process/thread should

occupy the resource (CPU, disk, etc)

CPU

Process 1 Process 2 Process 3

I want to

play
Whose turn is it?

2 Copyright ©: University of Illinois CS 241 Staff

In this lecture

 Context: The scheduling problem

 Objectives

 Algorithms

 Conclusion

3 Copyright ©: University of Illinois CS 241 Staff

Where scheduling fits

Scheduling decision!

new ready

running done

blocked

process created

normal or abnormal termination

quantum
expired

I/O
request

I/O complete

selected to
run enter

4 Copyright ©: University of Illinois CS 241 Staff

Where scheduling fits

Trigger to make scheduling decision:

whenever current process

exits the “running” state

new ready

running done

blocked

process created

normal or abnormal termination

quantum
expired

I/O
request

I/O complete

selected to
run enter

5 Copyright ©: University of Illinois CS 241 Staff

The basic scheduling decision

 Given a set of ready processes

 Which one should I run next?

 How long should it run?

 ...for each resource (CPU, disk, ...)

 Same underlying concepts apply to scheduling

processes or threads

 or picking packets to send in routers!

 or scheduling jobs in physical factories!

Copyright ©: University of Illinois CS 241 Staff 6

enter exit

processor

dispatch

ready processes

?

Example

Schedule

1

2

3

Processes

3 1 3 2 3 1 3 2 3 2 3 2 3 2 3 3 3 3

Time

Is this a good schedule?

7 Copyright ©: University of Illinois CS 241 Staff

Scheduling is not clear-cut

 Could I have done better? Depends!

 Was some job very high priority?

 Did I know when processes were arriving?

 What’s the context switch time?

 What’s my objective -- fairness, finish jobs quickly, meet

deadlines for certain jobs, ...?

 ...

 General-purpose OSes try to perform pretty well for

the common case

 Is this good enough to fly an airplane?

 Special purpose (e.g., “real-time”) scheduling exists

Copyright ©: University of Illinois CS 241 Staff 8

High-level objectives

Objective

Fairness Equitable shares of resource

Priority Allocate to most important first

Efficiency Make best use of equipment

Encourage good

behavior

Can’t take advantage of the system

Support heavy loads Degrade gracefully

Adapting to different

environments

Interactive, real-time, multi-media

Copyright ©: University of Illinois CS 241 Staff 9

Quantitative objectives

Objective

Fairness Processes get close to equal shares of

the CPU

Efficiency Keep resources as busy as possible

Throughput Number of processes that complete per

unit time

Waiting Time Time a process spends waiting in kernel’s

ready queue

Turnaround Time Time from process start to its completion

Response Time Amount of time from when a request was

first submitted until first response is

produced

Copyright ©: University of Illinois CS 241 Staff 10

Workloads

 I/O-Bound

 Does too much I/O to keep CPU busy

 e.g., interactive shell

 CPU-Bound

 Does too much computation to keep I/O busy

 e.g., a process sorting a million-entry array in RAM

 We should take advantage of these differences!

 Scheduling should load balance between I/O-bound and

CPU-bound processes

 Ideal would be to run all equipment (CPU, devices) at

100% utilization

Copyright ©: University of Illinois CS 241 Staff 11

Scheduling Algorithms

 Non-preemptive: batch systems

 Running process keeps CPU until it voluntarily gives it up

 Process exits

 Switches to blocked state

 First come first serve (FCFS)

 Shortest job first (SJF) (also preemptive version)

 Preemptive: interactive systems

 Running process is forced to give up CPU

 Via interrupts or signals (we’ll see these later)

 Round robin

 Priority

Copyright ©: University of Illinois CS 241 Staff 12

These are some of the important ones to

know, not a comprehensive list!

Which transitions are

preemptive?

Trigger to make scheduling decision:

whenever current process

exits the “running” state

13 Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

process created

normal or abnormal termination

quantum
expired

I/O
request

I/O complete

selected to
run enter

First Come First Serve (FCFS)

 Process that requests the CPU first is allocated
the CPU first
 Also called FIFO

 Non-preemptive
 Used in batch systems

 Implementation
 FIFO queues

 A new process enters the tail of the queue

 The scheduler selects next process to run from the
head of the queue

Copyright ©: University of Illinois CS 241 Staff 14

enter exit

processor

dispatch
queue

FCFS Example

Process Duration Order Arrival Time

P1 24 1 0

P2 3 2 3

P3 4 3 7

0

P1 (24)

24 27

P2 (3) P3 (4)

P1 waiting time:

P2 waiting time:

P3 waiting time:

The average waiting time:

15 Copyright ©: University of Illinois CS 241 Staff

31

FCFS Example

Process Duration Order Arrival Time

P2 24 2 3

P1 3 1 0

P3 4 3 7

0

P1 (24)

3 27

P2 (3) P3 (4)

P1 waiting time:

P2 waiting time:

P3 waiting time:

The average waiting time:

17 Copyright ©: University of Illinois CS 241 Staff

31

What if the arrival times of P1 and P2 are swapped?

Problems with FCFS

 Non-preemptive

 Not optimal AWT

 Cannot utilize resources in parallel

 Assume 1 process CPU bound and many I/O bound

processes

 Result

 Waiting time depends on arrival order

 Potentially long wait for jobs that arrive later

 Convoy effect, low CPU and I/O Device utilization

Copyright ©: University of Illinois CS 241 Staff 19

3

3

Convoy effect – Low I/O

CPU

Disk

Time

1 2 3

Jobs 1,2: a msec of CPU, lots of disk

Job 3: a sec of CPU, then a disk read

1 2

20 Copyright ©: University of Illinois CS 241 Staff

1 2

3 1

1 2 3

1 2 1 2

idle! idle!

Convoy effect – Low CPU

CPU

Disk

Time

Many jobs: a msec of CPU, lots of disk

Job 3: a sec of CPU, then a disk read

21 Copyright ©: University of Illinois CS 241 Staff

3

3

3

3 idle!

Shortest Job First (SJF)

 Job with shortest CPU time goes first

 Often used in batch systems

 Two types

 Non-preemptive

 Preemptive

Copyright ©: University of Illinois CS 241 Staff 22

Non-preemptive SJF: Example

Process Duration Order Arrival Time

P1 6 1 0

P2 8 2 0

P3 7 3 0

P4 3 4 0

0 3

P4 (3) P1 (6)

9

P3 (7)

16

P1 waiting time:

P2 waiting time:

P3 waiting time:

P4 waiting time:

Total waiting time =

Average waiting time =

P2 (8)

24

23 Copyright ©: University of Illinois CS 241 Staff

Compare to FCFS

Process Duration Order Arrival Time

P1 6 1 0

P2 8 2 0

P3 7 3 0

P4 3 4 0

0 6 14 21 24

25 Copyright ©: University of Illinois CS 241 Staff

P4 (3) P1 (6) P3 (7) P2 (8)

0 3

P4 (3) P1 (6)

9

P3 (7)

16

P2 (8)

24

P1 waiting time:

P2 waiting time:

P3 waiting time:

P4 waiting time:

Total waiting time =

Average waiting time =

Non-preemptive SJF

 Advantages

 Provably optimal for minimizing average wait time

 Moving shorter job before longer job improves waiting time of

short job more than it harms waiting time of long job

 Helps keep I/O devices busy

 Disadvantages

 Not practical: Cannot predict future CPU burst time

 OS solution: Use past behavior to predict future behavior

 Starvation: Long jobs may never be scheduled

Copyright ©: University of Illinois CS 241 Staff 27

Preemptive SJF

 Algorithm

 Job with least remaining time to completion runs

 So, a new job that is shorter than remainder of

running job preempts it

 Advantages

 Similar to non-preemptive SJF

 Provably minimal average wait time

 Moving shorter job before longer job improves waiting

time of short job more than it harms waiting time of

long job

Copyright ©: University of Illinois CS 241 Staff 28

Preemptive SJF

 Starvation again

 A long job keeps getting preempted by shorter
ones

 Example
 Process A with CPU time of 1 hour arrives at time 0

 Every 1 minute, a short process with CPU time of 2
minutes arrives

 What happens to A?
 A never gets to run

 What’s the difference between starvation and
deadlock?

Copyright ©: University of Illinois CS 241 Staff 29

Starvation vs. Deadlock

Copyright ©: University of Illinois CS 241 Staff 30

Unlucky job unlikely

to make progress

No hope of progress for

anyone!

Interactive Scheduling

 Usually preemptive

 Time is sliced into quanta, i.e., time intervals

 Scheduling decisions are made at the beginning of each

quantum

 Performance Metrics

 Average response time

 Fairness (or proportional resource allocation)

 Representative algorithms

 Round-robin

 Priority scheduling

Copyright ©: University of Illinois CS 241 Staff 31

Round-robin

 One of the oldest, simplest, most commonly used
scheduling algorithms

 Select process/thread from ready queue in a
round-robin fashion (i.e., take turns)

 Problems
 Might want some jobs to have greater share

 Context switch overhead

1 2

Time

3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 ...

32 Copyright ©: University of Illinois CS 241 Staff

Round-robin: Example

Process Duration Order Arrival Time

P1 3 1 0

P2 4 2 0

P3 3 3 0

0

Suppose time quantum is 1 unit and P1, P2 & P3 never block

P1

10

P1 waiting time:

P2 waiting time:

P3 waiting time:

The average waiting time (AWT):

33 Copyright ©: University of Illinois CS 241 Staff

P1 P1 P2 P2 P2 P2 P3 P3 P3

Round-robin

 Advantages

 Jobs get fair share of CPU

 Shortest jobs finish relatively quickly

 Disadvantages

 Poor average waiting time with similar job lengths

 Example: 10 jobs each requiring 10 time slices

 RR: All complete after about 100 time slices

 FCFS performs better!

 Performance depends on length of time quantum

Copyright ©: University of Illinois CS 241 Staff 35

Priority Scheduling

 Rationale: higher priority jobs are more

mission-critical

 Example: DVD movie player vs. send email

 Each job is assigned a priority

 Select highest priority runnable job

 FCFS or Round Robin to break ties

 Problems

 May not give the best AWT

 Starvation of lower priority processes

Copyright ©: University of Illinois CS 241 Staff 36

Priority Scheduling: Example

Process Duration Priority Arrival Time

P1 6 4 0

P2 8 1 0

P3 7 3 0

P4 3 2 0

0 8

P4 (3) P1 (6)

11

P3 (7)

18

P1 waiting time:

P2 waiting time:

P3 waiting time:

P4 waiting time:

The average waiting time (AWT):

P2 (8)

24

(Lower priority number is preferable)

37 Copyright ©: University of Illinois CS 241 Staff

Setting priorities: nice

nice [OPTION] [COMMAND [ARG]...]
 Run COMMAND with an adjusted niceness

 With no COMMAND, print the current niceness.

 Nicenesses range from -20 (most favorable scheduling) to
19 (least favorable).

 Options
 -n, --adjustment=N

 add integer N to the niceness (default 10)

 --help
 display this help and exit

 --version
 output version information and exit

Copyright ©: University of Illinois CS 241 Staff 39

Setting priorities in C

#include <sys/time.h>

#include <sys/resource.h>

int getpriority(int which, int who);

int setpriority(int which, int who, int prio);

 Access scheduling priority of process, process group, or user

 Returns:
 setpriority() returns 0 if there is no error, or -1 if there is

 getpriority() can return the value -1, so it is necessary to
clear errno prior to the call, then check it afterwards to
determine if a -1 is an error or a legitimate value

 Parameters:
 which

 PRIO_PROCESS, PRIO_PGRP, or PRIO_USER

 who
 A process identifier for PRIO_PROCESS, a process group identifier for

PRIO_PGRP, or a user ID for PRIO_USER

Copyright ©: University of Illinois CS 241 Staff 40

Choosing the time quantum

 How should we choose the time
quantum?

 Time quantum too large

 FIFO behavior

 Poor response time

 Time quantum too small

 Too many context switches (overhead)

 Inefficient CPU utilization

Copyright ©: University of Illinois CS 241 Staff 41

Choosing the time quantum

Objective 1:

Fast response time

Best case: quantum = 0,

response time = C

Objective 2:

Efficiency

Best case: quantum = infinity,

Job completion time = J

General strategy: set quantum somewhere in the middle

Job execution Context switch overhead Job execution

C

42 Copyright ©: University of Illinois CS 241 Staff

Choosing the time quantum

 Depends on

 Priorities, architecture, etc.

 Typical quantum: 10-100 ms

 Large enough that overhead is small percentage

 Small enough to give illusion of concurrency

 e.g., linux.ews.illinois.edu: 99.98 ms quantum

using round-robin

 Questions

 Does 100 ms matter? (how long is this in practical terms?)

 Does this mean all processes wait 100 ms to run?

Copyright ©: University of Illinois CS 241 Staff 43

Issues to remember

 Why doesn’t scheduling have one easy

solution?

 What are the pros and cons of each

scheduling policy?

 How does this matter when you’re writing

multiprocess/multithreaded code?

 Can’t make assumptions about when your

process will be running relative to others!

Copyright ©: University of Illinois CS 241 Staff 44

