
Copyright ©: University of Illinois CS 241 Staff 1

Threads Systems Concepts

Review: Why Threads?

 Processes do not share resources very well

 Why?

 Process context switching cost is very high

 Why?

 Threads: light-weight processes

Copyright ©: University of Illinois CS 241 Staff 2

Benefits of Threads

 Takes less time

 To create a new thread

 To terminate a thread

 To switch between two threads

 Inter-thread communication without

invoking the kernel

Copyright ©: University of Illinois CS 241 Staff 3

We like our Threads …

 Foreground and background work

 Asynchronous processing

 Speed of execution

 Modular program structure

Copyright ©: University of Illinois CS 241 Staff 4

Threads: Lightweight

Processes

5 Copyright ©: University of Illinois CS 241 Staff

a) Three processes each with one thread

b) One process with three threads

E
n
v
ir
o
n
m

e
n

t
(r

e
s
o
u
rc

e
)

execution

Tasks Suitable for Threading

 Has multiple parallel sub-tasks

 Some sub-tasks block for potentially

long waits

 Some sub-tasks use many CPU cycles

 Must respond to asynchronous events

Copyright ©: University of Illinois CS 241 Staff 6

Questions

 What are the similarities between processes
and threads?

 What are the differences between processes
and threads?

7 Copyright ©: University of Illinois CS 241 Staff

Thread Packages

 Kernel thread packages

 Implemented and supported at kernel

level

 User-level thread packages

 Implemented at user level

 Kernel perspective: everything is a

single-threaded process

8 Copyright ©: University of Illinois CS 241 Staff

Threads in User Space (Old

Linux)

Copyright ©: University of Illinois CS 241 Staff 9

Collection of
procedures that
manages the

threads

Keep track of threads in
process (analogous to
kernel process table)

User-level Threads

 Advantages

 Fast Context Switching: keeps the OS out of it!

 User level thread libraries do not require system calls

 No call to OS and no interrupts to kernel

 thread_yield

 Save the thread information in the thread table

 Call the thread scheduler to pick another thread to run

 Saving local thread state scheduling are local

procedures

 No trap to kernel, low context switch overhead, no memory

switch

 Customized Scheduling (at user level)

Copyright ©: University of Illinois CS 241 Staff 10

User-level Threads

 Disadvantages

 What happens if one thread makes a blocking

I/O call?

 Change the system to be non-blocking

 Always check to see if a system call will block

 What happens if one thread never yields?

 Introduce clocked interrupts

 Multi-threaded programs frequently make

system calls

 Causes a trap into the kernel anyway!

Copyright ©: University of Illinois CS 241 Staff 11

Kernel Threads

Copyright ©: University of Illinois CS 241 Staff 12

User-level Threads Kernel-level Threads

Kernel-level Threads

 Advantages

 Kernel schedules threads in addition to

processes

 Multiple threads of a process can run

simultaneously

 Now what happens if one thread blocks on I/O?

 Kernel-level threads can make blocking I/O calls

without blocking other threads of same process

 Good for multicore architectures

Copyright ©: University of Illinois CS 241 Staff 13

Kernel-level Threads

 Disadvantages

 Overhead in the kernel… extra data structures,

scheduling, etc.

 Thread creation is expensive

 Have a pool of waiting threads

 What happens when a multi-threaded process
calls fork()?

 Which thread should receive a signal?

Copyright ©: University of Illinois CS 241 Staff 14

Trade-offs?

 Kernel thread packages

 Each thread can make blocking I/O calls

 Can run concurrently on multiple processors

 Threads in User-level

 Fast context switch

 Customized scheduling

 No need for kernel support

Copyright ©: University of Illinois CS 241 Staff 15

Hybrid Implementations

(Solaris)

Multiplexing user-level threads onto kernel-level threads

16 Copyright ©: University of Illinois CS 241 Staff

When can we add

Concurrency?

 Work that can be executed, or data that can be

operated on, by multiple tasks simultaneously

 Block for potentially long I/O waits

 Use many CPU cycles in some places but not

others

 Must respond to asynchronous events

 Some work is more important than other work

(priority interrupts)

Copyright ©: University of Illinois CS 241 Staff 17

Concurrent Programming

 Assumptions

 Two or more threads (or processes)

 Each executes in (pseudo) parallel and can’t predict exact

running speeds

 The threads can interact via access to a shared variable

 Example

 One thread writes a variable

 The other thread reads from the same variable

 Problem

 The order of READs and WRITEs can make a difference!!!

Copyright ©: University of Illinois CS 241 Staff 18

Common Ways to Structure

Multi-threaded Code

 Manager/worker

 Single thread (manager) assigns work to other threads

(workers)

 Manager handles all input and parcels out work

Copyright ©: University of Illinois CS 241 Staff 19

Manager/Worker Model

Manager: Worker:
create N workers

forever { forever {

 get a request wait for request

 pick free worker perform task

} }

 Challenges

 Not enough/too many worker threads

Copyright ©: University of Illinois CS 241 Staff 20

M

W
W

W

W

Common Ways to Structure

Multi-threaded Code

 Manager/worker

 Single thread (manager) assigns work to other threads

(workers)

 Manager handles all input and parcels out work

 Pipeline

 Task is broken into a series of sub-tasks

 Each sub-task is handled by a different thread

Copyright ©: University of Illinois CS 241 Staff 21

Pipeline Model

Manager: Stage N:
create N stages forever {

forever { wait for request

 get a request perform task

 pick 1st stage pick stage n+1

} }

 Challenges

 Balancing per-stage load/parallelism

Copyright ©: University of Illinois CS 241 Staff 22

M 2 4 1 3

Common Ways to Structure

Multi-threaded Code

 Manager/worker

 Single thread (manager) assigns work to other threads

(workers)

 Manager handles all input and parcels out work

 Pipeline

 Task is broken into a series of sub-tasks

 Each sub-task is handled by a different thread

 Peer

 Same structure as manager/worker model

 After the main thread creates other threads, it participates

in the work

Copyright ©: University of Illinois CS 241 Staff 23

Race Conditions

 What is a race condition?

 Two or more threads have an inconsistent view of a

shared memory region (i.e., a variable)

 Why do race conditions occur?

 Values of memory locations replicated in registers during

execution

 Context switches at arbitrary times during execution

 Threads can see “stale” memory values in registers

Copyright ©: University of Illinois CS 241 Staff 24

Remember this code?

int x = 1;

main(…) {

 pthread_t tid;

 pthread_create(

 &tid,NULL,

 func,NULL);

 func(NULL);

 x = x + 1;

}

void* func(void*p){

 x = x + 1;

 printf("x is

 %d\n");

 return NULL;

}

Copyright ©: University of Illinois CS 241 Staff

What is the output?

Race Conditions

 Race condition

 Whenever the output depends on the precise

execution order of the processes!!!

 What solutions can we apply?

 Prevent context switches by preventing

interrupts

 Make threads coordinate with each other to

ensure mutual exclusion in accessing critical

sections of code

Copyright ©: University of Illinois CS 241 Staff 26

Threading Pitfalls

 Global variables

 No protection between threads

 Disallow all global variables

 Introduce new thread-specific global variables

 Introduce new library functions

 Are my libraries thread-safe?

 May use local variables

 May not be designed to be interrupted

 Create wrappers

Copyright ©: University of Illinois CS 241 Staff 27

Threadssafe Library Calls

#include <string.h>

char *token;

char *line = "LINE TO BE SEPARATED";

char *search = " ";

/* Token will point to "LINE". */

token = strtok(line, search);

/* Token will point to "TO". */

token = strtok(NULL, search);

#include <string.h>

char *token;

char *line = "LINE TO BE SEPARATED";

char *search = " ";

/* Token will point to "LINE". */

token = strtok_r(line, search);

/* Token will point to "TO". */

token = strtok_r(NULL, search);

Copyright ©: University of Illinois CS 241 Staff

Threadssafe Library Calls

#include <string.h>

char *token;

char *line = "LINE TO BE SEPARATED";

char *search = " ";

char *state;

/* Token will point to "LINE". */

token = strtok_r(line, search, &state);

/* Token will point to "TO". */

token = strtok_r(NULL, search, &state);

#include <string.h>

char *token;

char *line = "LINE TO BE SEPARATED";

char *search = " ";

char *state;

/* Token will point to "LINE". */

token = strtok_r(line, search, &state);

/* Token will point to "TO". */

token = strtok_r(NULL, search, &state);

Copyright ©: University of Illinois CS 241 Staff

System & library functions that are

not required to be thread-safe

Copyright ©: University of Illinois CS 241 Staff

asctime dirname getenv getpwent lgamma readdir

basename dlerror getgrent getpwnam lgammaf setenv

catgets drand48 getgrgid getpwuid lgammal setgrent

crypt ecvt getgrnam getservbyname localeconv setkey

ctime encrypt gethostbyaddr getservbyport localtime setpwent

dbm_clearerr endgrent gethostbyname getservent lrand48 setutxent

dbm_close endpwent gethostent getutxent mrand48 strerror

dbm_delete endutxent getlogin getutxid nftw strtok

dbm_error fcvt getnetbyaddr getutxline nl_langinfo ttyname

dbm_fetch ftw getnetbyname gmtime ptsname unsetenv

dbm_firstkey gcvt getnetent hcreate putc_unlocked wcstombs

dbm_nextkey getc_unlocked getopt hdestroy putchar_unlocked wctomb

dbm_open getchar_unlocked getprotobynumber inet_ntoa pututxline

dbm_store getdate getprotoent l64a rand

Things to think about …

 Who gets to go next when a thread

blocks/yields?

 Scheduling!

 What happens when multiple threads

are sharing the same resource?

 Synchronization!

Copyright ©: University of Illinois CS 241 Staff 31

