Thread Magic

How one process can do two things at once
o Thread of execution?
o Share process memory but each has its own call-stack

Create, Wait, Destroy
o How to use the POSIX API 'PThreads'

Threads and Processes
o When multi-threaded processes die

Copyright ©: University of lllinois CS 241 Staff

[Threads VS. Processes

Process
o fork Is expensive (time & memory)

Thread
o Lightweight process
o Shared data space

o Does not require lots of memory or
startup time

Copyright ©: University of lllinois CS 241 Staff

Environment (resource)

Processes vs. Threads

Process 1 Process 1 Process 1 Process
\\ | | i
\\
User y
space
Thread executlon Thread
Kernel
space Kernel Kernel

(a) (b)
Three processes each with one thread

One process with three threads

Copyright ©: University of lllinois CS 241 Staff

Process and Threads

Each process can include many threads

All threads of a process share:
Process ID

Memory (program code and global data)
Open file/socket descriptors
Semaphores

Signal handlers and signal dispositions

Working environment (current directory, user ID,
etc.)

O O O O O O

Copyright ©: University of lllinois CS 241 Staff

Processes vs. Threads

int main(void) { void * printer (int 1i) {
pthread t thread;
int result; while (1) {
int 1 = 0; sleep (2) ;
printf ("Now i =

if (fork() == 0) $d\n", *i);

printer (i) ; }
else }

while (1)

i++;

What is the output?

Copyright ©: University of lllinois CS 241 Staff

Processes vs. Threads

int main(void) { void * printer thread(
pthread t thread; void *ptr) {
int result; int* i = (int*) ptr;
int 1 = 0;

while (1) {

result = sleep(2) ;
pthread create (&thread, printf ("Now i =
NULL, printer thread, $d\n", *i);
(void*) &i);)

assert (result == 0); }

while (1)

it+; What is the output?

Copyright ©: University of lllinois CS 241 Staff

Thread Usage: Word
Processor

Working file can only be accessed by one process
at a time

Four score and seven || nation, or any nation || lives that this nation||who struggled here| | here to the unfinished | |they gave the last full
years ago, our fathers ||so conceived and so|| might live. 1t is|| have consecrated it, far| | work which they who | |measure of devotion,
brought forth upon this || dedicated, can long || altogether fitting and| | above our poor power| [fought here have thus | |that we here highly
continent a new nation: || endure. We are met on || proper that we should || to add or detract. The| | far so nobly advanced. | [resolve that these dead

a conceived in liberty, [|a great battlefield of || do this. world will little note, [|1t is mther for us to be | [shall not have died in
and dedicated to the || that war But, ina largersense, | | nor long remember, | | here dedicated 1o the | vain that this nation,
proposition that all We have come to || wecannot dedicate, we || what we say here, but| | great task remaining | |under God, shall have
men are created equal. || dedicate a portion of || cannot consecrate we||it can never forget| |before ws, that from |fa new birth of fieedom

Now we are engaged || that field as a final || cannot hallow this| | whatthey did here. these honored dead we | |and that government of
in a great civil war ||resting place for those || ground. The brve|| Ltis for us the living, | [take increased devotion | [the people by the

WO l I I d testing whether that || who here gave their|| men, living and dead,|| mther, to be dedicated | | to that cause for which | |people, for the people
| J

~N"

happen '
when this
IS single-
threaded?

Kernel
Keyboard Disk

Copyright ©: University of lllinois CS 241 Staff

Thread Usage: Word
Processor

Working file can only be accessed by one process
at a time

Four score and seven | [nation, or any nation | [lives that this nation| [who struggled here| [here to the unfinished | [they gave the last full
years ago, our fathers [|so conceived and so|| might live. 1t is|| have consecrated i, far| [work which they who | |measure of devotion,
brought forth upon this || dedicated, can long || altogether fitting and| | above our poor power| [fought here have thus | |that we here highly
continent a new nation: | endure. We are met on || proper that we should || to add or detract. The| | far 5o nobly advanced. | [resolve that these dead

conceived in liberty, [|a great battlefield of || do this. world will little note, [|1t is mther for us to be | [shall not have died in
and dedicated to the || that war But, ina largersense, | | nor long remember, | | here dedicated 1o the | vain that this nation,
proposition that all We have come to || wecannot dedicate, we || what we say here, but| | great task remaining | |under God, shall have
men are created equal. || dedicate a portion of || cannot consecrate we||it can never forget| |before ws, that from |fa new birth of fieedom

Now we are engaged || that field as a final || cannot hallow this| | whatthey did here. these honored dead we | |and that government of

in a great civil war ||resting place for those || ground. The brve|| Ltis for us the living, | [take increased devotion | [the people by the
testing whether that || who here gave their|| men, living and dead,|| mther, to be dedicated | | to that cause for which | |people, for the people

| J
~N"

Kernel
Keyboard Disk

Copyright ©: University of lllinois CS 241 Staff

Thread Usage: Web Server

Web server process

Dispatcher thread

What - »é? ' Worker thread
would R

happen |f Web page cache
this were
Single' Kernel
threaded?
Network
connection

Copyright ©: University of lllinois CS 241 Staff

User
space

Kernel
space

[Web Server

Pseudo-code for previous Alternative
slide
o Dispatcher thread o Dispatcher thread
while (TRUE) ({ while (TRUE) ({
get next request (&buf) ; get next request (&buf) ;
handoff work (&buf) ; handoff work (&buf) ;
} }
o Worker thread o Worker thread
while (TRUE) { work (&buf) {
wait for work (&buf) ; look for page in cache (&buf, é&page);
look _for page in cache(&buf, &page); if (page_not _in cache(&page))
if (page_not_in cache(&page)) read page_ from disk (&buf, &page);
read page_ from disk (&buf, &page); return page (&page) ;
return_page (&page) ; }

What is the difference?

Copyright ©: University of lllinois CS 241 Staff

[Thread of Execution

Sequential set of instructions
o Function calls & automatic (local)

variab

o Need
eacht

es
Program Counter and Stack for

nread

Copyright ©: University of lllinois CS 241 Staff

Compare: Normal function call
[(1 thread)

Calling program

Called function
processfd(): T processfd() {
{\5
}

e——> Thread of execution

Copyright ©: University of lllinois CS 241 Staff

Compare: Threaded function
call

Creatingprogram

. Created thread
pthread_create(); | | _>processfd(){
/2
}
\3
L Called function .
B | S— ----> Thread creation
{\J} e——> Thread of execution

Copyright ©: University of lllinois CS 241 Staff

Thread Execution States

States associated with a change in thread
state
o Spawn (another thread)

o Block
Does blocking a thread block other, or all, threads

o Unblock

o Finish (thread)
De-allocate register context and stacks

Copyright ©: University of lllinois CS 241 Staff

Thread-Specific Resources

Each thread has it's
own
o Thread ID (integer)

o Stack, Registers, e ‘ il
Program Counter é m //Process
Thread 1's — B E H: Thread 3's stack
Threads within the -
same process can -

communicate using
shared memory
o Must be done carefully!

Copyright ©: University of lllinois CS 241 Staff

Processes vs. Threads

Per Process ltems Per Thread Items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

Each thread executes separately

Threads in the same process share many
resources

No protection among threads!! (What?)

Copyright ©: University of lllinois CS 241 Staff

Process Creation vs.
Thread Creation

fork()

Platform

real user
AMD 2.3 GHz Opteron (16 cpus) 125 1.0
AMD 2.4 GHz Opteron (8 cpus) 176 2.2
IBM 4.0 GHz POWERSG6 (8 cpus) 95 0.6
IBM 1.9 GHz POWERS p5-575 (8 cpus) 64.2 30.7
IBM 1.5 GHz POWERA4 (8 cpus) D4 48.6
INTEL 2.4 GHz Xeon (2 cpus) @ 1.5
INTEL 1.4 GHz Itanium?2 (4 cpus) 545 1.1

Sys
12.5
15.7

8.8
27.6
47.2
20.8
22.2

pthread_create()

real
1.2
1.4
1.6
1.7

2.0

http://www.lInl.gov/computing/tutorials/pthreads.

Timings reflect 50,000 process/thread

user
0.2
0.3
0.1
0.6
1.0
0.7
1.2

Sys
1.3
1.3
0.4
1.1
1.5
0.9
0.6

Creations, were performed with the time utility, and units are

In seconds, no optimization flags.

Copyright ©: University of lllinois CS 241 Staff

[What’s Got To Do With
t?

Early on
o Each OS had it's own thread library/API

o Difficult to write multithreaded programs
Learn a new API with each new OS
Modify code with each port to a new OS

So

o POSIX (IEEE 1003.1¢-1995) provided a
standard known as pthreads

Copyright ©: University of lllinois CS 241 Staff

[The pthreads AP

Thread management
Today

- o Creating, detaching, joining, etc.
Set/query thread attributes
Next

Mutexes
week _ _
m) o Synchronization
Condition variables

» o Communications between threads that
share a mutex

Copyright ©: University of lllinois CS 241 Staff

Creating a Thread

int pthread create (pthread t* tid,
pthread attr t* attr, void*(child main), wvoid¥*
arg) ;

= Spawn a new posix thread

= Parameters:

o tid.
= Unique thread identifier returned from call
o attr:

m Attributes structure used to define new thread
m Use NULL for default values

© child main:

= Main routine for child thread

= Takes a pointer (void¥*), returns a pointer (void¥)
O arg:

= Argument passed to child thread

Copyright ©: University of lllinois CS 241 Staff

Creating a Thread

pthread create () takes a pointer to a function as
one of its arguments
o child main is called with the argument specified by arg
o child main can only have one parameter of type void *

o Complex parameters can be passed by creating a structure
and passing the address of the structure

o The structure can't be a local variable

Thread ID
O pthread t pthread self (void);

o Returns currently executing thread’s ID

Copyright ©: University of lllinois CS 241 Staff

Example: pthread create ()

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
void *snow(void *data) {
printf ("Let it snow ... %s\n", data);
pthread exit (NULL) ;
: | What is this?
int main(int argc, char *argv[]) {
pthread t mythread;
int result;
char *data = "Let it snow.";
result = pthread create (&mythread, NULL, data) ;
printf ("pthread create() returned %$d\n", result);
if (result)
exit (1);
pthread exit (NULL) ;

Copyright ©: University of lllinois CS 241 Staff

[Thread vS. Process Creation

fork () clones the process

o Two separate processes with
Independent destinies

o Independent memory space for each
process

pthread create ()

o Start from a function
o Share memory

Copyright ©: University of lllinois CS 241 Staff

fork ()

Process A
Process B
Global __| fork()
Variables \ Global
L |
Variables
Code
Code
Stack
Stack

Copyright ©: University of lllinois CS 241 Staff

pthread create ()

Process A

Thread 1

Global

—

Variables

Code

Stack

pthread create()

Process A
Thread 2

Stack

Copyright ©: University of lllinois CS 241 Staff

fork () Vvs.
pthread create ()

void* func (void* p) {
X =x+1;
printf ("x is %d\n");
return NULL;

main (..) {
int x = 1;
fork () ;

func (NULL) / What is the output?

Copyright ©: University of lllinois CS 241 Staff

fork () Vvs.
pthread create ()

void* func (void* p) {
X =x+1;
printf ("x is %d\n");
return NULL;

int x = 1;
main (..) {
pthread t tid;

pthread create(

&tid,NULL, _
func,NULL) ; What is the output now?

func (NULL) ;

Copyright ©: University of lllinois CS 241 Staff

Summary: Creating Threads

Initially, main () has a single thread

o All other threads must be explicitly created
pthread create() =2 new executable thread
o Can be called any number of times from anywhere

Maximum number of threads is implementation
dependent

Question:

o After a thread has been created, how do you know when it
will be scheduled to run by the operating system?

o Answer: It is up to the operating system
Note: Good coding should not require knowledge of scheduling

Copyright ©: University of lllinois CS 241 Staff

pthreads Attributes

Attributes

o Datastructure pthread attr t
o Set of choices for a thread

o Passed in thread creation routine

Choices

o Scheduling options (more later on scheduling)
o Detached state

Detached
O Main thread does not wait for the child threads to terminate
Joinable

O Main thread waits for the child thread to terminate
o Useful if child thread returns a value

Copyright ©: University of lllinois CS 241 Staff

pthreads Attributes

= Initialize an attributes structure to the default
values
0 int pthread attr init (pthread attr t*
attr) ;
» Set the detached state value in an attributes
structure

0 int pthread attr setdetachedstate
(pthread attr t* “attr, int value);

o Value
] PTHREAD_CREATE_DE TACHED
] PTHREAD_CREATE_J OINARLE

Copyright ©: University of lllinois CS 241 Staff

Detached Threads

Master
Thread

A

pthread create()

Worker
Thread

> pthread exit() [———>

Worker
Thread

> pthread exit() [———>

Worker
Thread

v

> pthread exit()

Copyright ©: University of lllinois CS 241 Staff

Detaching Threads:
pthread detach ()

int pthread detach(pthread t thread);
Thread resources can be reclaimed on termination
Return results of a detached thread are unneeded

Returns
o 0 on success
o Error code on failure

Parameters
O thread:

Target thread identifier
Notes

o pthread detach() can be used to explicitly detach a thread
even though it was created as joinable

o There is no converse routine

Copyright ©: University of lllinois CS 241 Staff

Joined Threads

Master pthread create() > pthread join() [——>
Thread A

Worker
Thread

pthread exit()

Worker
Thread

Worker
Thread

Copyright ©: University of lllinois CS 241 Staff

Waiting for Threads:
pthread join()

int pthread join(pthread t thread, void** retval);
Suspend calling thread until target thread terminates

Returns
o 0 on success
o Error code on failure
Parameters
o thread.
Target thread identifier

O retval:

The value passed to pthread exit () by the terminating thread is
made available in the location referenced by retval

Copyright ©: University of lllinois CS 241 Staff

Waiting for Threads:
pthread join()

int pthread join(pthread t thread, void** retval);

Note
o You cannot call pthread join() ona detached thread,

o Detaching means you are NOT interested in knowing about the
thread’s exit

Set pthread attr to joinable before creating thread

pthread create()

pthread attr init(&attr);
pthread attr setdetachstate(&attr,
PTHREAD CREATE JOINABLE) ;

Copyright ©: University of lllinois CS 241 Staff

Terminating Threads:
pthread exit ()

int pthread exit(void * retval);
Terminate the calling thread

Makes the value retval available to any successful join with
the terminating thread

Returns
o pthread exit () cannot return to its caller
Parameters

O retval:
Pointer to data returned to joining thread

Note

o Ifmain () exits before its threads, and exits with
pthread exit (), the other threads continue to execute.
Otherwise, they will be terminated when main () finishes.

Copyright ©: University of lllinois CS 241 Staff

Returning data through
pthread join()

void *thread(void *vargp) {

pthread exit((void *)42); What is missing?

}

int main() {

int 1i;
pthread t tid;

pthread create(&tid, NULL, thread, NULL);
pthread join(tid, (void *¥*)&i);

printf ("$d\n",i) ;

Copyright ©: University of lllinois CS 241 Staff

Example: pthread join()

#include <pthread.h> /* Initialize and set thread detached
#include <stdio.h> attribute */

#include <stdlib.h> pthread attr_init(&attr);

#define NUM THREADS 4 pthread attr_ setdetachstate(&attr,

PTHREAD CREATE JOINABLE) ;

int main (int argc, char *argv([]) {

pthread t thread[NUM THREADS] ; for (t=0; t<NUM_THREADS; t++) {

pthread attr t attr; printf ("Main: creating thread %1d\n", t);
int rc; rc = pthread create(&thread[t], &attr,
long t; Bungork, (void *)t);

void *status; if (re) {

printf ("ERROR; return code is %d\n",
rc) ;
exit(-1);
}
}
/* Free attributes */

pthread attr destroy(&attr);

Copyright ©: University of lllinois CS 241 Staff

Example: pthread join()

void *BusyWork (void *t) ({ int main (int argc, char *argv[]) ({

int i;

long tid;

double result = 0.0; /* Wait for the other threads */

tid = (long)t; for (£t=0: t<NUM THREADS: t++) {

printf ("Thread %1d starting...\n", rc = pthread join(thread[t], &status);
tid) ; if (rc) {

for (i=0; i<1000000; i++) { printf ("ERROR; return code is %d\n", rc);
result = result + sin(i) * tan(i); exit(-1);

} }

printf ("Thread %1d result = %e\n", printf ("Main: status for thread %1d: %1d\n",
tid, result); t, (long)status);

pthread exit((void*) t); }

printf ("Main: program completed. Exiting.\n");
pthread exit (NULL) ;

Copyright ©: University of lllinois CS 241 Staff

pthread Error Handling

pthreads functions do not follow the usual
Unix conventions
o Similarity

Returns 0 on success

o Differences
Returns error code on failure
Does not set errno

o What about errno?

Each thread has its own

Define REENTRANT (-D_REENTRANT switch to
compiler) when using pthreads

Copyright ©: University of lllinois CS 241 Staff

[Thread Lifetime

A thread exists until

o It returns from the function or calls
pthread exit()

o The whole process terminates
o The machine catches fire

Copyright ©: University of lllinois CS 241 Staff

S0, your process terminates
when...

Any thread calls
exit () ;

The main thread returns
main() {

pthread create();
return O;

}

Segmentation fault
* (char*)0 = 0;

There are no more threads left to run

Copyright ©: University of lllinois CS 241 Staff

Main points

A thread is the lightest unit of work that can
be scheduled to run on the processor
When creating a thread you

o Indicate which function the thread should
execute

o Indicate the detach state of the thread
When a new thread Is created

o It runs concurrently with the creating thread
o It shares common data space

Copyright ©: University of lllinois CS 241 Staff

Why Use Threads Over
Processes?

Creating a new process can be expensive

o Time
A call into the operating system is needed
Context-switching involves the operating system
o Memory
The entire process must be replicated

o The cost of inter-process communication and
synchronization of shared data

May involve calls into the operation system kernel
Threads can be created without replicating an entire
process
o Creating a thread is done in user space rather than kernel

J

Copyright ©: University of lllinois CS 241 Staff

Threads vs. Processes

Property

variables

Data/control

Parallelism
(one CPU)

Parallelism
(multiple
CPUs)

Processes created with
fork

Get copies of all variables

Get new process IDs

Must communicate
explicitly, e.g., use pipes
or small integer return
value

Concurrent

May be executed
simultaneously

Threads of a
process

Share global
variables

Share the same
process ID but have
unique thread ID

May communicate
with return value or
carefully shared
variables

Concurrent

Kernel threads may
be executed
simultaneously

Copyright ©: University of lllinois CS 241 Staff

Ordinary function
calls

Share global
variables

Share the same
process ID (and
thread ID)

May communicate
with return value
or shared variables

Sequential

Sequential

[Take-away guestions

Why are threads useful?

o Why not just create concurrent
processes?

What support is needed by the O/S?

What could happen if a thread makes
a blocking I/0O call?

Copyright ©: University of lllinois CS 241 Staff

