
Concurrency & Context Switching

Process Control Block
What's in it and why? How is it used? Who sees it?

5 State Process Model
State Labels. Causes of State Transitions. Impossible

Transitions.

Zombies and Orphans

 Copyright ©: University of Illinois CS 241 Staff

Processes - A System View

What the fork?

 Concurrency

 What is a sequential program?

 A single thread of control that executes one instruction

 When it is finished, it executes the next logical

instruction

 Use system()

 What is a concurrent program?

 A collection of autonomous sequential programs,

executing (logically) in parallel

 Use fork()

Copyright ©: University of Illinois CS 241 Staff

What the fork?

 What does concurrency gain us?

 The appearance that multiple actions are

occurring at the same time

Copyright ©: University of Illinois CS 241 Staff

What is fork good for?

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main() {

 pid_t pid;

int i;

 if(pid = fork()) { /* parent */

 }

 else { /* child */

 }

 return 0;

}

Copyright ©: University of Illinois CS 241 Staff

childProcedures();

parentProcedures();

What is fork good for?

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main() {

 pid_t pid;

int i;

while (1) {

 if(pid = fork()) { /* parent */

 }

 else { /* child */

 }

 }

 return 0;

}

Copyright ©: University of Illinois CS 241 Staff

/* wait for new clients */

/* handle new client */

/* reset server */

Why Concurrency?

 Natural Application Structure

 The world is not sequential!

 Easier to program multiple independent and

concurrent activities

 Better resource utilization

 Resources unused by one application can be

used by the others

 Better average response time

 No need to wait for other applications to

complete

Copyright ©: University of Illinois CS 241 Staff

Benefits of Concurrency

Copyright ©: University of Illinois CS 241 Staff

Keyboard

CPU

Disk

Time

Keyboard

CPU

Disk

Wait for input

Wait for input

Input

N
o
 C

o
n
c
u
rr

e
n
c
y

W
it
h
 C

o
n
c
u
rr

e
n
c
y

Benefits of Concurrency

Copyright ©: University of Illinois CS 241 Staff

Client 1

Client 2

Client 3

Time

Client 1

Client 2

Client 3

Wait for input

Wait for input

Input

N
o
 C

o
n
c
u
rr

e
n
c
y

W
it
h
 C

o
n
c
u
rr

e
n
c
y

On a single CPU system…

 Only one process can use the CPU at

a time

 Uniprogramming

 Only one process resident at a time

… But we want the appearance of every

process running at the same time

 How can we manage CPU usage?

 “Resource Management”

Copyright ©: University of Illinois CS 241 Staff

On a single CPU system…

 Your process is currently using the

CPU

 What are other processes doing?

Copyright ©: University of Illinois CS 241 Staff

long count = 0;

while(count >=0)

 count ++;

On a single CPU system…

 Answer

 Nothing

 What can the OS do to help?

 Naively… Put the current process on

'pause'

 What are our options?

Copyright ©: University of Illinois CS 241 Staff

O/S : I need the CPU

1. Time slicing

 Use a HW timer to generate a HW interrupt

2. Multiprogramming

 Multiple processes resident at a time

 Wait until the process issues a system call

 e.g., I/O request

3. Cooperative Multitasking

 Let the user process yield the CPU

Copyright ©: University of Illinois CS 241 Staff

Time Slicing

 A Process loses the CPU when its

time quanta has expired

 Advantages?

 Disadvantages?

Copyright ©: University of Illinois CS 241 Staff

long count = 0;

while(count >=0)

 count ++;

Multiprogramming

 Wait until system call

 Advantages?

 Disadvantages?

Copyright ©: University of Illinois CS 241 Staff

long count = 0;

while(count >=0) {

 printf(“Count = %d\n”, cnt);

 count ++;

}

Cooperative Multitasking

 Wait until the process gives up the

CPU

 Advantages?

 Disadvantages?

Copyright ©: University of Illinois CS 241 Staff

long count = 0;

while(count >=0) {

 count ++;

 if(count % 10000 == 0)

 yield();

}

Context Switch: In a simple

O/S (no virtual memory)

 Context switch

 The act of

removing one

process from

the running

state and

replacing it with

another

Copyright ©: University of Illinois CS 241 Staff

Dispatcher

Process A

Process B

Process C

8000

Address

100

5000

8000

12000

Program Counter

Context Switch

 Overhead to re-assign CPU to another

user process

 What activities are required?

Copyright ©: University of Illinois CS 241 Staff

Context Switch

 Overhead to re-assign CPU to another user

process

 Capture state of the user's processes so that we

can restart it later (CPU Registers)

 Queue Management

 Accounting

 Scheduler chooses next process

 Run next process

Copyright ©: University of Illinois CS 241 Staff

2 State Model

Processes

Copyright ©: University of Illinois CS 241 Staff

not

running
running

pause

dispatch

enter exit

2 State Model

Processes

System

Copyright ©: University of Illinois CS 241 Staff

not

running
running

pause

dispatch

enter exit

enter exit
processor

pause

dispatch
queue

2 State Model

Processes

System

Copyright ©: University of Illinois CS 241 Staff

not

running
running

pause

dispatch

enter exit

enter exit
processor

pause

dispatch
queue

What information

do we need to keep

in the queue?

Process Control Block (PCB)

 In-memory system structure

 User processes cannot access it

 Identifiers

 pid & ppid

 Processor State Information

 User-visible registers, control and status, stack

 Scheduling information

 Process state, priority, …, waiting for event info

Copyright ©: University of Illinois CS 241 Staff

PCB (more)

 Inter-process communication

 Signals

 Privileges

 CPU instructions, memory

 Memory Management

 Segments, VM control 'page tables'

 Resource Ownership and utilization

Copyright ©: University of Illinois CS 241 Staff

Five State Process Model

"All models are wrong. Some Models are

Useful"

 George Box, Statistician

 2 state model

 Too simplistic

 What does “Not Running” mean?

 7 state model

 Considers suspending process to disk

 See Stallings 3.2

Copyright ©: University of Illinois CS 241 Staff

5 State Model - States

Copyright ©: University of Illinois CS 241 Staff

not

running

running

5 State Model - States

Copyright ©: University of Illinois CS 241 Staff

ready

running

blocked

5 State Model - States

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

Five State Process Model

 Running

 Currently executing

 On a single processor machine, at most one process in the

“running” state

 Ready

 Prepared to execute

 Blocked

 Waiting on some event

 New

 Created, but not loaded into memory

 Done

 Released from pool of executing processes

Copyright ©: University of Illinois CS 241 Staff

5 State Model - Transitions

 Null (nothing) to New

 New process creation

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

enter

5 State Model - Transitions

 New to Ready

 Move to pool of

executable

processes

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

5 State Model - Transitions

 Ready to Running

 Chosen to run from

the pool of

processes

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

5 State Model - Transitions

 Running to Ready

 Preempted by OS

 Running to Blocked

 Request for an

unavailable resource

 Running to Done

 Terminated by the OS

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

5 State Model - Transitions

 Blocked to Ready

 Resource is now available

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

5 State Model - Transitions

 Ready to Done

 Terminated by parent

 Blocked to Done

 Terminated by parent

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

5 State Model - Transitions

Copyright ©: University of Illinois CS 241 Staff

new ready

running done

blocked

process created

normal or abnormal termination

quantum

expired

I/O

request

I/O complete

selected to

run enter

Process Queue Model

Copyright ©: University of Illinois CS 241 Staff

enter exit
processor

dispatch
ready queue

blocked queue

timeout

event wait

enter exit
processor

dispatch
queue

2 State Model: What is missing?

Process exceeds

time quanta

Process makes

systems call

Process Queue Model

Copyright ©: University of Illinois CS 241 Staff

enter exit
processor

dispatch
ready queue

event 1 queue

timeout

event 1 wait

event 2 queue

event 2 wait

event 3 queue

event n wait

…

What do we

gain with

multiple

queues?

Process Queue Model

Copyright ©: University of Illinois CS 241 Staff

enter exit
processor

dispatch
ready queue

priority 1 queue

timeout

priority 1 wait

priority 2 queue

priority 2 wait

priority 3 queue

priority n wait

…

What do we

gain with

multiple

queues?

Orphans and Zombies

Copyright ©: University of Illinois CS 241 Staff

Take-away questions

 What would happen if user processes

were allowed to disable interrupts?

 In a single CPU system what is the

maximum number of processes that

can be in the running state?

 Next: Threads and Thread Magic
Copyright ©: University of Illinois CS 241 Staff

