Processes - A System View

Concurrency & Context Switching

Process Control Block
What's in it and why? How is it used? Who sees it?

5 State Process Model

State Labels. Causes of State Transitions. Impossible
Transitions.

Zombies and Orphans

Copyright ©: University of lllinois CS 241 Staff

What the fork?

Concurrency

o What is a sequential program?
A single thread of control that executes one instruction

When it is finished, it executes the next logical
Instruction

Use system ()

o What is a concurrent program?

A collection of autonomous sequential programs,
executing (logically) in parallel

Use fork ()

Copyright ©: University of lllinois CS 241 Staff

[What the fork?

What does concurrency gain us?

The appearance that multiple actions are

occurring at the same time
(] ®

Copyright ©: University of lllinois CS 241 Staff

What Is fork good for?

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {
pid t pid;
int 1i;

if (pid = fork()) { /* parent */
barentProcedures();

}

else { /* child */
khildProcedures();

return O;

Copyright ©: University of lllinois CS 241 Staff

What Is fork good for?

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main() {

pid t pid;
int i;
while (1) {
V* wait for new clients */
if (pid = fork()) { /* parent */
[/* reset server */]
}
else { /* child */
V* handle new client */
}
}
return O;

Copyright ©: University of lllinois CS 241 Staff

[Why Concurrency?

Natural Application Structure

o The world is not sequential!

o Easier to program multiple independent and
concurrent activities

Better resource utilization

o Resources unused by one application can be
used by the others

Better average response time

o No need to wait for other applications to
complete

Copyright ©: University of lllinois CS 241 Staff

No Concurrency

With Concurrency

Benefits of Concurrency

Wait for input

eoad | W W =,

CPU L T) j‘ {l

Disk Input 1 1 i

)
Wait for input Time
4

Keyboard !J - -

CPU dl

Disk '

Copyright ©: University of lllinois CS 241 Staff

No Concurrency

With Concurrency

Benefits of Concurrency

Wait for input

Client 1 -‘ -‘

Client 2 f f —“ dl

Client 3 Input 1 1 ﬁ ﬁ

Wait for input Time

_ 4

Client 1 !J - -

Client 2 dl

Client 3

Copyright ©: University of lllinois CS 241 Staff

[On a single CPU system...

Only one process can use the CPU at
a time

o Uniprogramming
Only one process resident at a time

... But we want the appearance of every
process running at the same time

How can we manage CPU usage?
o “Resource Management”

Copyright ©: University of lllinois CS 241 Staff

[On a single CPU system...

Your process Is currently using the
CPU

long count = 0;
while (count >=0)
count ++;

What are other processes doing?

Copyright ©: University of lllinois CS 241 Staff

[On a single CPU system...

Answer
o Nothing

What can the OS do to help?

o Naively... Put the current process on
‘pause’

What are our options?

Copyright ©: University of lllinois CS 241 Staff

O/S : | need the CPU

Time slicing
o Use a HW timer to generate a HW interrupt
Multiprogramming

o Multiple processes resident at a time

o Wait until the process issues a system call
e.g., I/O request

Cooperative Multitasking
o Letthe user process yield the CPU

Copyright ©: University of lllinois CS 241 Staff

[Time Slicing

= A Process loses the CPU when its
time quanta has expired

—

-

N

long count = 0;
while (count >=0)
count ++;

= Advantages?
= Disadvantages?

[

Copyright ©: University of lllinois CS 241 Staff

Multiprogramming

= Wait until system call

long count = 0;

while (count >=0) {

printf (“Count = %d\n”, cnt);

count ++;
}
*_ I
= Advantages?
= Disadvantages?

Copyright ©: University of lllinois CS 241 Staff

[Cooperative Multitasking

Wait until the process gives up the
CPU

long count = 0;
while (count >=0) {
count ++;
if (count % 10000 == 0)
yield();
}

Advantages”?
Disadvantages?

Copyright ©: University of lllinois CS 241 Staff

Context Switch: In a simple
O/S (no virtual memory)

] Address Program Counter
Context switch 100 8000
Dispatcher
o The act of
removing one 2000
Process A
process from
. 8000
the running
state an d Process B
replacing it with 12000
another Process C

Copyright ©: University of lllinois CS 241 Staff

[Context Switch

Overhead to re-assign CPU to another
user process

What activities are required?

Copyright ©: University of lllinois CS 241 Staff

Context Switch

Overhead to re-assign CPU to another user
process

o Capture state of the user's processes so that we
can restart it later (CPU Registers)

Queue Management

Accounting

Scheduler chooses next process
Run next process

O O O O

Copyright ©: University of lllinois CS 241 Staff

2 State Model

Processes dispatch

enter exit

N
7|

v

not .
. running
running

pause

Copyright ©: University of lllinois CS 241 Staff

2 State Model

Processes dispatch
enter o exit
” running Lo ”
pause
System
gueue _ _
enter dispatch exit

“1 Processor

—
\ 4

pause

Copyright ©: University of lllinois CS 241 Staff

2 State Model

Processes dispatch
enter o exit
” running Lo ”
pause
System
gueue _ _
enter dispatch exit
T > >l processor >

What information
do we need to keep pause
In the queue?

Copyright ©: University of lllinois CS 241 Staff

Process Control Block (PCB)

In-memory system structure
o User processes cannot access it
o ldentifiers
pid & ppid
o Processor State Information
User-visible registers, control and status, stack

o Scheduling information
Process state, priority, ..., waiting for event info

Copyright ©: University of lllinois CS 241 Staff

PCB (more)

o Inter-process communication
Signals

o Privileges
CPU Instructions, memory

o Memory Management
Segments, VM control 'page tables'

o Resource Ownership and utilization

Copyright ©: University of lllinois CS 241 Staff

Five State Process Model

"All models are wrong. Some Models are
Useful"

o George Box, Statistician

2 state model

o Too simplistic

o What does “Not Running” mean?
/ state model

o Considers suspending process to disk
o See Stallings 3.2

Copyright ©: University of lllinois CS 241 Staff

[5 State Model - States

Copyright ©: University of lllinois CS 241 Staff

[5 State Model - States

blocked

Copyright ©: University of lllinois CS 241 Staff

[5 State Model - States

blocked

Copyright ©: University of lllinois CS 241 Staff

Five State Process Model

Running
o Currently executing

o On a single processor machine, at most one process in the
‘running” state

Ready
o Prepared to execute

Blocked
o Waiting on some event

New

o Created, but not loaded into memory
Done

o Released from pool of executing processes

Copyright ©: University of lllinois CS 241 Staff

5 State Model - Transitions

Null (nothing) to New
o New pProcess creation

enter @ @
Q @ blocked

Copyright ©: University of lllinois CS 241 Staff

5 State Model - Transitions

New to Ready

o Move to pool of
executable
processes

Q @ blocked

Copyright ©: University of lllinois CS 241 Staff

5 State Model - Transitions

Ready to Running
o Chosen to run from

the pool of
processes
‘ @ blocked

Copyright ©: University of lllinois CS 241 Staff

5 State Model - Transitions

Running to Ready
o Preempted by OS

Running to Blocked

o Request for an
unavailable resource

Running to Done
o Terminated by the OS

blocked

Copyright ©: University of lllinois CS 241 Staff

5 State Model - Transitions

Blocked to Ready
o Resource is now available

Q @ blocked

Copyright ©: University of lllinois CS 241 Staff

5 State Model - Transitions

Ready to Done
o Terminated by parent

Blocked to Done
o Terminated by parent .-

]

1/

/
/ 7

7
’// /I
””/ ///
-- blocked

Copyright ©: University of lllinois CS 241 Staff

/

5 State Model - Transitions

normal or abnormal termination

1/O
request

process created

guantum
expired

blocked

Copyright ©: University of lllinois CS 241 Staff

Process Queue Model

enter

2 State Model: What is missing?

queue

dispatch

>l processor

exit

ready queue

>l processor

\

exit

enter dispatch
N >
j timeout |
blocked queue
event wait

Copyright ©: University of lllinois CS 241 Staff

Process exceeds
time quanta

Process makes
systems call

Ll

Process Queue Model

enter

ready queue

. dispatch \ exit .
7 “1 Processor -
timeout |
event 1 queue
event 1 wait What do we
event 2 queue gain with
event 2 wait multiple
__ gueues?
event 3 queue
event n wait

Copyright ©: University of lllinois CS 241 Staff

Process Queue Model

enter

ready queue

Vv

dispatch

“1 Processor

exit

\

timeout |

priority 1 queue

priority 1 wait

priority 2 queue

priority 2 wait

priority”?; gueue

What do we
gain with
multiple
gueues?

priority n wait

Copyright ©: University of lllinois CS 241 Staff

[Orphans and Zombies

Copyright ©: University of lllinois CS 241 Staff

[Take-away guestions

What would happen If user processes
were allowed to disable interrupts?

In a single CPU system what is the
maximum number of processes that
can be In the running state?

Next: Threads and Thread Magic

Copyright ©: University of lllinois CS 241 Staff

