
Concurrency & Context Switching 

Process Control Block 
What's in it and why? How is it used? Who sees it? 

5 State Process Model 
State Labels. Causes of State Transitions. Impossible 

Transitions. 

Zombies and Orphans 
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Processes - A System View 



What the fork? 

 Concurrency 

 What is a sequential program? 

 A single thread of control that executes one instruction  

 When it is finished, it executes the next logical 

instruction 

 Use system() 

 What is a concurrent program? 

 A collection of autonomous sequential programs, 

executing (logically) in parallel 

 Use fork() 
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What the fork? 

 What does concurrency gain us? 

 The appearance that multiple actions are 

occurring at the same time 
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What is fork good for? 

#include <stdio.h> 

#include <sys/types.h> 

#include <unistd.h> 

 

int main() {  

 pid_t pid;  

int i; 

 

 

 if(pid = fork()) { /* parent */ 

 

  } 

  else {    /* child */ 

 

  } 

 

 return 0; 

} 
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childProcedures(); 

parentProcedures(); 



What is fork good for? 

#include <stdio.h> 

#include <sys/types.h> 

#include <unistd.h> 

 

int main() {  

 pid_t pid;  

int i; 

while (1) { 

 

 if(pid = fork()) { /* parent */ 

 

  } 

  else {    /* child */ 

 

  } 

 } 

 return 0; 

} 
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/* wait for new clients */ 

/* handle new client */ 

/* reset server */ 



Why Concurrency? 

 Natural Application Structure 

 The world is not sequential!  

 Easier to program multiple independent and 

concurrent activities 

 Better resource utilization 

 Resources unused by one application can be 

used by the others 

 Better average response time 

 No need to wait for other applications to 

complete 
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Benefits of Concurrency 
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Benefits of Concurrency 
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On a single CPU system… 

 Only one process can use the CPU at 

a time 

 Uniprogramming 

 Only one process resident at a time 

… But we want the appearance of every 

process running at the same time 

 How can we manage CPU usage? 

 “Resource Management” 
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On a single CPU system… 

 Your process is currently using the 

CPU 

 

 

 

 What are other processes doing? 
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long count = 0; 

while(count >=0) 

   count ++; 



On a single CPU system… 

 Answer 

 Nothing 

 What can the OS do to help? 

 Naively… Put the current process on 

'pause' 

 

 What are our options? 
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O/S : I need the CPU 

1. Time slicing 

 Use a HW timer to generate a HW interrupt 

2. Multiprogramming  

 Multiple processes resident at a time 

 Wait until the process issues a system call 

 e.g., I/O request 

3. Cooperative Multitasking 

 Let the user process yield the CPU 
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Time Slicing 

 A Process loses the CPU when its 

time quanta has expired 

 

 

 

 Advantages? 

 Disadvantages? 
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long count = 0; 

while(count >=0) 

   count ++; 



Multiprogramming 

 Wait until system call 

 

 

 

 

 Advantages? 

 Disadvantages? 
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long count = 0; 

while(count >=0) { 

   printf(“Count = %d\n”, cnt); 

   count ++; 

} 



Cooperative Multitasking 

 Wait until the process gives up the 

CPU 

 

 
 

 

 Advantages? 

 Disadvantages? 
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long count = 0; 

while(count >=0) { 

   count ++; 

   if(count % 10000 == 0) 

      yield(); 

} 



Context Switch: In a simple 

O/S (no virtual memory) 

 Context switch 

 The act of 

removing one 

process from 

the running 

state and 

replacing it with 

another 
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Context Switch 

 Overhead to re-assign CPU to another 

user process 

 

 What activities are required? 

 

 

Copyright ©: University of Illinois CS 241 Staff 



Context Switch 

 Overhead to re-assign CPU to another user 

process 

 Capture state of the user's processes so that we 

can restart it later (CPU Registers) 

 Queue Management 

 Accounting 

 Scheduler chooses next process 

 Run next process 
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2 State Model 

Processes 
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Process Control Block (PCB) 

 In-memory system structure  

 User processes cannot access it 

 Identifiers  

 pid & ppid 

 Processor State Information  

 User-visible registers, control and status, stack 

 Scheduling information  

 Process state, priority, …, waiting for event info 
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PCB (more) 

 Inter-process communication  

 Signals 

 Privileges  

 CPU instructions, memory 

 Memory Management  

 Segments, VM control 'page tables' 

 Resource Ownership and utilization 
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Five State Process Model 

"All models are wrong. Some Models are 

Useful"  

 George Box, Statistician 

 2 state model 

 Too simplistic 

 What does “Not Running” mean? 

 7 state model  

 Considers suspending process to disk 

 See Stallings 3.2 
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5 State Model - States 
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5 State Model - States 
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5 State Model - States 

Copyright ©: University of Illinois CS 241 Staff 

new ready 

running done 

blocked 



Five State Process Model 

 Running 

 Currently executing 

 On a single processor machine, at most one process in the 

“running” state 

 Ready 

 Prepared to execute 

 Blocked 

 Waiting on some event 

 New 

 Created, but not loaded into memory 

 Done 

 Released from pool of executing processes 
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5 State Model - Transitions 

 Null (nothing) to New 

 New process creation 
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5 State Model - Transitions 

 New to Ready 

 Move to pool of  

executable 

processes 
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5 State Model - Transitions 

 Ready to Running 

 Chosen to run from  

the pool of  

processes 
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5 State Model - Transitions 

 Running to Ready 

 Preempted by OS 

 Running to Blocked  

 Request for an  

unavailable resource 

 Running to Done 

 Terminated by the OS 
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5 State Model - Transitions 

 Blocked to Ready 

 Resource is now available 
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5 State Model - Transitions 

 Ready to Done 

 Terminated by parent 

 Blocked to Done 

 Terminated by parent 
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5 State Model - Transitions 
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Process Queue Model 
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enter exit 
processor 
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2 State Model: What is missing? 

Process exceeds  

time quanta 

Process makes 

systems call 



Process Queue Model 
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Process Queue Model 
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enter exit 
processor 
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ready queue 
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priority 2 wait 
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priority n wait 

… 
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Orphans and Zombies 
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Take-away questions 

 What would happen if user processes 

were allowed to disable interrupts? 

 

 In a single CPU system what is the 

maximum number of processes that 

can be in the running state? 

 

 Next: Threads and Thread Magic 
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